首页> 外文学位 >Technologies enabling autologous neural stem cell-based therapies for neurodegenerative disease and injury.
【24h】

Technologies enabling autologous neural stem cell-based therapies for neurodegenerative disease and injury.

机译:能够实现基于神经干细胞的自体神经退行性疾病和损伤治疗的技术。

获取原文
获取原文并翻译 | 示例

摘要

The intrinsic abilities of mammalian neural stem cells (NSCs) to self-renew, migrate over large distances, and give rise to all primary neural cell types of the brain offer unprecedented opportunity for cell-based treatment of neurodegenerative diseases and injuries. This thesis discusses development of technologies in support of autologous NSC-based therapies, encompassing harvest of brain tissue biopsies from living human patients; isolation of NSCs from harvested tissue; efficient culture and expansion of NSCs in 3D polymeric microcapsule culture systems; optimization of microcapsules as carriers for efficient in vivo delivery of NSCs; genetic engineering of NSCs for drug-induced, enzymatic release of transplanted NSCs from microcapsules; genetic engineering for drug-induced differentiation of NSCs into specific therapeutic cell types; and synthesis of chitosan/iron-oxide nanoparticles for labeling of NSCs and in vivo tracking by cellular MRI.;Sub-millimeter scale tissue samples were harvested endoscopically from subventricular zone regions of living patient brains, secondary to neurosurgical procedures including endoscopic third ventriculostomy and ventriculoperitoneal shunt placement. On average, 12,000 +/- 3,000 NSCs were isolated per mm 3 of subventricular zone tissue, successfully demonstrated in 26 of 28 patients, ranging in age from one month to 68 years.;In order to achieve efficient expansion of isolated NSCs to clinically relevant numbers (e.g. hundreds of thousands of cells in Parkinson's disease and tens of millions of cells in multiple sclerosis), an extracellular matrix-inspired, microcapsule-based culture platform was developed. Initial culture experiments with murine NSCs yielded unprecedented expansion folds of 30x in 5 days, from initially minute NSC populations (154 +/- 15 NSCs per 450 mum diameter capsule). Within 7 days, NSCs expanded as almost perfectly homogenous populations, with 94.9% +/- 4.1% of cultured cells staining positive for Nestin, a marker for NSCs, 81.4 +/- 3.7% of cells staining positive for KI67, a proliferation marker, and 0% of cultured cells staining positive for GFAP, a marker indicative of undesired astrocytes.;The same microcapsules used for expansion were designed to contain NSCs beyond delivery to the brain, maintaining NSC phenotype and suppressing undesired astroglial differentiation during the acute phase of inflammation beyond surgical implantation. In vitro, >80% of encapsulated cells challenged with 0.1 % fetal calf serum over five days in culture showed persistent Nestin expression, compared to 20% under the same conditions outside of microcapsules, indicating that the microcapsule interior can preserve phenotype in the presence of serum concentrations at least an order of magnitude greater than those estimated to be present in cerebrospinal fluid (CSF) after surgical implantation.;In order to release transplanted NSCs on cue from microcapsules after the acute inflammatory response, NSCs were genetically engineered using the Tet-onRTM drug-inducible gene expression system to produce and secrete the enzyme alginase in response to the inducer drug doxycycline. Engineered NSCs, exposed to 1 mug/ml doxycycline, produced sufficient alginase to digest alginate, a structural component of the microcapsule wall, within 8 hours, effectively dissolving microcapsules and releasing encapsulated NSCs.;In order to direct differentiation of transplanted NSCs towards therapeutically valuable cell types (e.g. dopaminergic neurons in case of Parkinson's disease and oligodendrocytes in case of multiple sclerosis), NSCs were genetically engineered to inducibly express the proneural transcription factors NGN1 and Olig1 on demand. Induced expression of NGN1 yielded >90% neurons, induced expression of Olig1 yielded >80% oligodendrocytes, compared to neuron/oligodendrocyte yields 10% for GFP-expressing controls. NSCs with the capacity to inducibly express these transcription factors showed preservation of therapeutically valuable migratory capacity (average RMS migration rate of approximately 40 mum/hr before induction). Differentiating NSCs, however, showed largely arrested migration within 12 hours of induction for Olig1 cells and 36 hours of induction for NGN1 cells.;Finally, tracking of NSCs at the single cell level via high-resolution (11.7 T) cellular MRI, was made possible through development of contrast-enhancing, chitosan-functionalized ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles that are rapidly uptaken by NSCs. Chitosan, a positively charged derivative of chitin, promotes electrostatically-driven attachment of chitosan-USPIO nanoparticles to negatively charged domains on the outer leaflet of the cellular membrane, enhancing uptake by clathrin-mediated endocytosis (>10x increase in uptake efficiency relative to unmodified USPIO). Uptaken USPIOs remained in cells for at least 8 days due to charge-induced endosomal escape of nanoparticles into the cytosol.;In combination, all developed technologies offer a basis for clinical evaluation of autologous neural stem cell replacement therapies, the future of which promises to shift the present paradigm for treatment of neurodegenerative diseases and injuries.
机译:哺乳动物神经干细胞(NSC)自我更新,远距离迁移并产生大脑所有主要神经细胞类型的内在能力为基于细胞的神经退行性疾病和损伤治疗提供了前所未有的机会。本文讨论了支持基于NSC的自体疗法的技术发展,包括从活着的人类患者中收集脑组织活检样品。从收获的组织中分离出神经干细胞;在3D聚合物微胶囊培养系统中有效培养和扩增NSC;优化微胶囊作为载体,以有效地体内递送NSC; NSC的基因工程,用于药物诱导的酶促从微胶囊中释放出移植的NSC;基因工程,用于药物诱导的神经干细胞分化为特定的治疗细胞类型;壳聚糖/氧化铁纳米粒子的合成及用于NSCs标记和通过细胞MRI进行体内跟踪的方法。;在包括内窥镜第三脑室造口术和脑室腹膜后神经外科手术在内窥镜下从患者活体脑室下区域内窥镜下收集亚毫米级组织样品。分流器放置。每mm 3的脑室下区组织平均分离出12,000 +/- 3,000个NSC,成功地在28例患者中的26例中进行了证实,年龄从1个月到68岁不等;为了使分离的NSC有效地扩展至临床相关数量众多(例如,帕金森氏病中有成千上万的细胞,多发性硬化症中有成千上万的细胞),开发了一种基于细胞外基质的,基于微胶囊的培养平台。最初的鼠类NSC培养实验在最初5分钟的NSC种群中产生了30倍的前所未有的扩展倍数(每450毫米直径的胶囊154 +/- 15 NSC)。在7天内,NSC几乎扩展为同质种群,其中94.9%+/- 4.1%的培养细胞对Nestin(NSC的标志物)染色呈阳性,81.4 +/- 3.7%的细胞对KI67的增殖标志物染色呈阳性,以及0%的培养细胞对GFAP(指示不良星形胶质细胞的标志物)染色呈阳性。相同的用于扩张的微胶囊被设计为包含超出递送至大脑的NSC,保持NSC表型并抑制炎症的急性期星形胶质细胞的不良分化。除了手术植入。在体外,在培养五天中,> 80%的被0.1%胎牛血清攻击的包被细胞表现出持续的巢蛋白表达,而在微囊外相同条件下,<20%的细胞表达巢蛋白表达,表明存在时,微囊内部可以保留表型至少比手术植入后脑脊液(CSF)中存在的血清浓度高一个数量级。;为了在急性炎症反应后从微胶囊中释放提示的NSCs,使用Tet基因工程改造了NSCs -onRTM药物诱导型基因表达系统,以响应诱导剂多西环素产生和分泌酶藻酸酶。经过工程改造的NSC暴露于1杯/毫升的强力霉素中后,产生的藻酸酶足以在8小时内消化藻酸盐(微囊壁的结构成分),从而有效地溶解微囊并释放封装的NSC。为了引导移植的NSC向具有治疗价值的方向分化细胞类型(例如,在帕金森氏病的情况下为多巴胺能神经元,在多发性硬化症的情况下为少突胶质细胞),经过基因工程改造,可以按需诱导表达神经元转录因子NGN1和Olig1。与表达GFP的对照的神经元/少突胶质细胞产率相比,NGN1的诱导表达产生> 90%的神经元,Olig1的诱导表达产生> 80%的少突胶质细胞。具有可诱导表达这些转录因子能力的NSC显示保留了治疗上有价值的迁徙能力(诱导前平均RMS迁移率约为40毫米/小时)。然而,分化的NSCs在Olig1细胞诱导的12小时内和NGN1细胞诱导的36小时内显示出明显的迁移停止;最后,通过高分辨率(11.7 T)细胞MRI追踪了单细胞水平的NSCs。通过开发对比度增强的,壳聚糖功能化的超小型超顺磁性氧化铁(USPIO)纳米颗粒,这些纳米颗粒可被NSC快速吸收。壳聚糖是几丁质的带正电荷的衍生物,可促进壳聚糖-USPIO纳米粒子在静电驱动下附着到细胞膜外部小叶上的带负电荷的区域,通过网格蛋白介导的内吞作用增强摄取(相对于未修饰的USPIO,摄取效率提高10倍以上)。由于电荷诱导的纳米颗粒内体逃逸进入胞质溶胶,USPIO被吸收在细胞中保留了至少8天。结合起来,所有已开发的技术为自体神经干细胞替代疗法的临床评估提供了基础,其未来有望实现改变了目前用于治疗神经退行性疾病和损伤的范例。

著录项

  • 作者

    Bakhru, Sasha H.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Biology Neuroscience.;Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;生物医学工程;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:38:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号