首页> 外文学位 >Weak state and its evaluation for routing in large scale dynamic networks.
【24h】

Weak state and its evaluation for routing in large scale dynamic networks.

机译:大型动态网络中路由的弱状态及其评估。

获取原文
获取原文并翻译 | 示例

摘要

Routing protocols in communication networks rely on routing table entries ("states") to make decisions on how to forward packets. For resilient routing, states should always be up-to-date. As the network size increases and it becomes more dynamic, most routing table entries at every router must be updated. A natural consequence is the huge increase in control traffic that crowds out the network capacity. For such large and dynamic networks, we propose to use probabilistic routing tables, where routing table entries are considered as a probabilistic hints (called weak state), and not absolute truth. We build routing protocols using the concept of weak state for mobile ad-hoc networks (MANETs) and delay tolerant networks (DTNs).;For MANETs, we propose the Weak State Routing (WSR) protocol that uses the concept of random directional walks (i.e. walks in randomly chosen directions) as a primitive both for disseminating weak state, and for forwarding packets. In particular, when a random directional walk for forwarding a packet reaches a node, it consults the weak-state at the node, and biases its walk direction if the node has stronger information (in terms of confidence) about the destination location.;In DTNs, an additional challenge is that a complete path may never exist between a source-destination pair and routing is achieved by the store-carry-forward paradigm. Intermittent connectivity also prevents the control messages from diffusing in the network. Hence, it is difficult to maintain consistent routing states. We propose Weak State Routing protocol for Delay Tolerant Networks (WSR-D) that uses explicit mappings with weak states. Weak state is particularly useful for DTNs because it has probabilistic semantics and can be refreshed locally. WSR-D disseminates weak state using a local osmosis mechanism. It employs a biasing technique similar to that of WSR. WSR-D exploits node mobility rather than node positions. A packet is forwarded to an intermediate node only if it is moving in a direction closer to the direction given by the biasing weak state.;Our simulation results show that WSR offers a high packet delivery ratio, more than 98%. Protocol overhead scales as O(N), N being the number of nodes. The state complexity of the protocol is theta(N3/2). Even though packets follow paths longer than the shortest paths, the average path length is asymptotically efficient and scales as O( N ). Despite longer paths, WSRs end-to-end packet delivery delay is much smaller than the prior work because of the dramatic reduction in control traffic overhead. WSR-D achieves very high delivery ratio even when the buffer space in the nodes is limited. It reduces the number of packet transfers between nodes in comparison to prior work at the cost of increased delay.;We also investigate the effect of state weak-ness on the consistency of information. We define two-metrics, pure distortion and informed distortion, to evaluate the consistency of the weak state paradigm and compare it against strong state (i.e. deterministic state that relies on explicit refresh messages to remain valid). Pure distortion measures the average gap between the actual value of the state and the value maintained at a remote node. On the other hand, the use of confidence increases the protocol's ability to cope with even large pure distortion. The resulting effective distortion is captured by the informed distortion metric. We analytically show that weak state causes significantly less distortion values than strong state.;In the final part of this dissertation, we investigate the random walks on dynamic time-graphs. Random walks form the basis of the unstructured methods. We investigate the effect of dynamism in the network on the random walk performance, which is a strong indicator of network connectivity. Such networks are modeled by a novel 3-mode adjacency tensor. The expected hitting time of a random walk in a dynamic network is small if the network is well connected. The representation also leads to the information whether a node can be reached by another node after a certain number of time steps, which is indicated by reachability tensor. We unfold the reachability tensor around the mode or dimension that models time to obtain a matrix. Our experiments show that the correlation between the expected hitting time and the second singular-value of this matrix is above 0.95. Hence, it is a strong indicator of network connectivity. (Abstract shortened by UMI.)
机译:通信网络中的路由协议依赖于路由表条目(“状态”)来决定如何转发数据包。对于弹性路由,状态应该始终是最新的。随着网络规模的增加和动态程度的提高,必须更新每个路由器上的大多数路由表条目。自然的结果是控制流量的大量增加,挤占了网络容量。对于此类大型动态网络,我们建议使用概率路由表,其中路由表项被视为概率提示(称为弱状态),而不是绝对真理。我们使用弱状态概念为移动自组织网络(MANET)和时延容忍网络(DTN)构建路由协议;对于MANET,我们提出了使用随机定向漫游概念的弱状态路由(WSR)协议(即沿着随机选择的方向行走)既是用于传播弱状态,又用于转发数据包的原语。特别地,当用于转发分组的随机有向步行到达节点时,它查询该节点处的弱状态,并且如果该节点具有关于目的地位置的更强信息(在置信度方面),则偏向其步行方向。 DTN的另一个挑战是,源-目的地对之间可能永远不会存在完整的路径,并且通过存储—携带范式实现路由。间歇性连接还可以防止控制消息在网络中传播。因此,难以维持一致的路由状态。我们提出了用于延迟容忍网络的弱状态路由协议(WSR-D),该协议使用具有弱状态的显式映射。弱状态对于DTN尤其有用,因为它具有概率语义并且可以在本地刷新。 WSR-D使用局部渗透机制传播弱状态。它采用类似于WSR的偏置技术。 WSR-D利用节点移动性而不是节点位置。仅当数据包的移动方向接近偏弱状态给出的方向时,该数据包才会转发到中间节点。我们的仿真结果表明,WSR提供了较高的数据包传递率,超过98%。协议开销的缩放比例为O(N),N为节点数。该协议的状态复杂度为theta(N3 / 2)。即使数据包所遵循的路径比最短路径更长,平均路径长度也渐近有效,并且缩放为O(N)。尽管路径较长,但是WSR的端到端数据包传递延迟比以前的工作要小得多,这是因为控制流量开销大大减少了。即使节点中的缓冲区空间有限,WSR-D仍可实现很高的交付率。与以前的工作相比,它减少了节点之间的数据包传输数量,但增加了延迟。我们还研究了状态弱化对信息一致性的影响。我们定义了两个指标,即纯失真和已知失真,以评估弱状态范例的一致性并将其与强状态进行比较(即依赖显式刷新消息保持有效的确定性状态)。纯失真度量的是状态的实际值与在远程节点上维护的值之间的平均差距。另一方面,置信度的使用增加了协议处理甚至大的纯失真的能力。所产生的有效失真被通知的失真度量所捕获。分析表明,弱状态比强状态引起的畸变值要小得多。在本文的最后,我们研究了动态时间图上的随机游动。随机游走是非结构化方法的基础。我们研究了网络中的动态性对随机游走性能的影响,这是网络连通性的有力指标。这样的网络由新颖的三模邻接张量建模。如果网络连接良好,则在动态网络中随机行走的预期命中时间会很小。该表示还导致信息,在一定数量的时间步长之后,另一个节点是否可以到达另一个节点,这由可达性张量指示。我们围绕对时间建模以获得矩阵的模式或维度展开可达性张量。我们的实验表明,预期命中时间与该矩阵的第二个奇异值之间的相关性高于0.95。因此,它是网络连通性的有力指标。 (摘要由UMI缩短。)

著录项

  • 作者

    Acer, Utku Gunay.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号