首页> 外文学位 >Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins.
【24h】

Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins.

机译:环烷烃催化转化的非均相动力学模型。

获取原文
获取原文并翻译 | 示例

摘要

The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks.;In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation.;This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin catalytic conversions respectively, are reported. Using these data, heterogeneous kinetic models accounting for intracrystallite molecular transport, adsorption and thermal and catalytic cracking of both cycloparaffin reactants are established. Results show that undesirable hydrogen transfer reactions are more pronounced and selectively favoured against other reactions at lower reaction temperatures, while the desirable ring-opening and cracking reactions predominate at the higher reaction temperatures. Moreover, results of the present work show that while crystallite size may have an effect on the overall conversion in some situations, there is a definite effect on the selectivity of products obtained during the cracking of MCH and decalin and the cracking of MCH in a mixture with co-reactants such as 1,3,5-triisopropylbenzene.;Keywords. cycloparaffins, naphthenes, fluid catalytic cracking, kinetic modeling, Y-zeolites, diffusion, adsorption, ring-opening, hydrogen transfer, catalyst selectivity.
机译:高价值轻烃原料的供应有限,加上原油价格上涨,已引起国际认可加拿大油砂的巨大潜力。然而,随着加拿大沥青产量的最近增长,许多技术挑战,其中之一是沥青衍生的原料中大量存在芳烃和环烷烃。除了对环境的不利影响外,芳烃还限制了流化催化裂化(FCC)原料转化,降低有价值的产品(例如汽油和中间馏分油)的收率和质量,增加易于在催化剂上形成焦炭的聚芳烃的水平,并最终损害FCC装置的性能。尽管环烷烃没有这种负面影响,但它们是芳烃的前体,因为它们经常发生氢转移反应。然而,环烷烃裂解化学还涉及其他竞争反应,这些反应非常复杂,需要进行大量研究。本论文提供了对使用精心选择的模型化合物(例如甲基环己烷(MCH)和十氢化萘)催化环烷烃催化裂解的基础知识的认识。在温度,反应时间,反应物分压和催化剂与烃类的比例方面,使用CREC Riser Simulator在类似于工业FCC装置的操作条件下,在FCC型催化剂上对这些环烷烃进行热裂解和催化裂解。负载型沸石的微晶尺寸在0.4至0.9微米之间变化,同时监测活性和选择性。 MCH的催化转化率为4至16 wt%,十氢化萘的催化转化率为8至27 wt%。确定了环烷烃的反应途径,包括开环,蛋白水解裂化,异构化,氢转移和烷基转移。据报道,分别在MCH和十氢化萘催化转化过程中形成的60多种和140多种产物的收率和选择性。利用这些数据,建立了解释两种环烷烃反应物的晶体内分子传输,吸附以及热裂解和催化裂解的非均质动力学模型。结果表明,在较低的反应温度下,不希望有的氢转移反应相对于其他反应更为明显,并且选择性地偏向其他反应,而在较高的反应温度下,所需的开环和裂化反应占主导。此外,目前的工作结果表明,尽管在某些情况下微晶尺寸可能会影响总转化率,但对MCH和十氢化萘的裂解以及混合物中MCH裂解过程中获得的产物的选择性具有确定的影响。与共反应物,例如1,3,5-三异丙基苯。环烷烃,环烷烃,流化催化裂化,动力学建模,Y型沸石,扩散,吸附,开环,氢转移,催化剂选择性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号