首页> 外文学位 >Synthesis, characterization and kinetic evaluation of dendrimer-derived iridium and iridium-palladium catalysts.
【24h】

Synthesis, characterization and kinetic evaluation of dendrimer-derived iridium and iridium-palladium catalysts.

机译:树枝状聚合物衍生的铱和铱-钯催化剂的合成,表征和动力学评价。

获取原文
获取原文并翻译 | 示例

摘要

Supported catalysts are very important for industrial, automotive and fuel cell applications. Ir and Pd catalysts possess unique properties that can enhance activity and selectivity for a variety of reactions. However, conventional synthetic methods used to produce monometallic and bimetallic catalysts often result in wide particle size distributions and non-uniform materials which can be difficult to characterize on a fundamental level. Poly(amidoamine) (PAMAM) dendrimers are used to form and stabilize cluster and nanoparticles in solution generating dendrimer metal nanocomposites (DMN) precursors. In the present work, the effectiveness of using DMN precursors to prepare gamma-Al 2O3 supported Ir, Pd and Ir-Pd catalysts is reported.;The main part of this work consisted on the developing a synthetic protocol where fourth generation hydroxyl-terminated (G4OH) PAMAM dendrimer is used to produce a 1% Ir/gamma-Al2O3. The complexation process between IrCl3 and dendrimer functional groups in solution was followed using ultraviolet-visible (UV-vis) spectroscopy and X-ray absorption fine structure (EXAFS) spectroscopy. Seven days were required to achieve maximum complexation, resulting in a substitution of two Cl- ions from the precursor with two oxygen ions from the dendrimer functional groups. No discernable reduction of Ir3+ to Ir0 clusters or particles was observed after treatment with reducing agents. The resulting DMN precursors were delivered to gamma-Al2O3 support via standard wet impregnation. In order to expose the metal nanoparticles to the surface of the catalysts thermal dendrimer decomposition and CO adsorption were monitored using transmission Fourier transform infrared (FTIR) spectroscopy. Two activation treatments were obtained yielding narrow particle size distributions (1.4-3 nm) and less than 1% carbon in the surface.;Pd/gamma-Al2O3 and Irx-Pdy/gamma-Al 2O3 catalysts were prepared utilizing the DMN approach by two different synthetic routes and with three bimetallic compositions. In general, the use of DMN precursors yielded narrower particle size distribution. These catalysts including Ir/gamma-Al2O3 were compared with the conventional counterparts, characterized and evaluated for benzonitrile hydrogenation. Dendrimer-derived Ir catalyst has higher turnover frequency (TOF) than the conventional, however both present similar selectivity (dibenzylamine). In the other hand, Pd catalysts are even more active than Ir catalysts, however they are selective to benzylamine. Non-monotonically behavior is obtained for the initial reaction rate versus catalyst composition with a maximum at the 50:50% Ir:Pd molar ratio catalysts. Overall, DMN-derived bimetallic precursors form different bimetallic structures or distributions of metallic particles relative to those formed by conventional methods of preparation.
机译:负载型催化剂对于工业,汽车和燃料电池应用非常重要。 Ir和Pd催化剂具有独特的性能,可以增强各种反应的活性和选择性。然而,用于生产单金属和双金属催化剂的常规合成方法通常导致较宽的粒度分布和不均匀的材料,这可能难以在基本水平上表征。聚(酰胺基胺)(PAMAM)树状聚合物用于在生成树状聚合物金属纳米复合材料(DMN)前体的溶液中形成和稳定簇和纳米颗粒。在目前的工作中,报道了使用DMN前驱体制备γ-Al2O3负载的Ir,Pd和Ir-Pd催化剂的有效性。;这项工作的主要部分在于开发合成方案,其中第四代羟基封端的(使用GAMA树枝状聚合物生产1%Ir /γ-Al2O3。 IrCl3和树枝状大分子官能团在溶液中的络合过程通过紫外-可见(UV-vis)光谱和X射线吸收精细结构(EXAFS)光谱进行。需要7天才能实现最大程度的络合,导致前体中的两个Cl-离子被树枝状聚合物官能团中的两个氧离子取代。用还原剂处理后,未观察到明显的Ir3 +还原为Ir0团簇或颗粒。所得的DMN前体通过标准的湿浸渍递送至γ-Al2 O 3载体。为了使金属纳米颗粒暴露于催化剂的表面,使用透射傅立叶变换红外(FTIR)光谱监测热树枝状聚合物的分解和CO的吸附。获得了两种活化处理,产生了窄的粒径分布(1.4-3 nm),并且表面碳含量不足1%。;采用DMN方法,通过两种方法制备了Pd /γ-Al2O3和Irx-Pdy /γ-Al2O3催化剂。不同的合成路线,并具有三种双金属成分。通常,使用DMN前体会产生较窄的粒度分布。将包括Ir /γ-Al2O3在内的这些催化剂与常规催化剂进行了比较,表征并评估了苄腈的氢化反应。树枝状聚合物衍生的Ir催化剂比常规催化剂具有更高的周转频率(TOF),但是两者都具有相似的选择性(二苄胺)。另一方面,Pd催化剂甚至比Ir催化剂更具活性,但是它们对苄胺具有选择性。相对于催化剂组成,获得了初始反应速率的非单调行为,其中Ir:Pd摩尔比为50:50时达到最大值。总体而言,DMN衍生的双金属前体相对于通过常规制备方法形成的金属前体形成不同的金属颗粒双金属结构或分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号