首页> 外文学位 >Application of alkylsilane self-assembled monolayers for cell patterning and development of biological microelectromechanical systems.
【24h】

Application of alkylsilane self-assembled monolayers for cell patterning and development of biological microelectromechanical systems.

机译:烷基硅烷自组装单层在细胞构图和生物微机电系统开发中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Advances in microfabrication and surface chemistry techniques have provided a new paradigm for the creation of in vitro systems for studying problems in biology and medicine in ways that were previously not practical. The ability to create devices with micro- to nano-scale dimensions provides the opportunity to non-invasively interrogate and monitor biological cells and tissue in large arrays and in a high-throughput manner. These systems hold the potential to, in time, revolutionize the way problems in biology and medicine are studied in the form of point-of-care devices, lab-on-chip devices, and biological microelectromechanical systems (BioMEMS). With new in vitro models, it will be possible to reduce the overall cost of medical and biological research by performing high-throughput experiments while maintaining control over a wide variety of experimental variables. A critical aspect of developing these sorts of systems, however, is controlling the device/tissue interface. The surface chemistry of cell-biomaterial and protein-biomaterial interactions is critical for long-term efficacy and function of such devices.The work presented here is focused on the application of surface and analytical chemistry techniques for better understanding the interface of biological elements with silica substrates and the development a novel Bio-MEMS device for studying muscle and neuromuscular biology. A novel surface patterning technique based on the use of a polyethylene glycol (PEG) silane self-assembled monolayer (SAM) as a cytophobic surface and the amine-terminated silane diethyeletriamine (DETA) as a cytophilic surface was developed for patterning a variety of cell types (e.g. skeletal muscle, and neural cells) over long periods of time (over 40 days) with high fidelity to the patterns. This method was then used to pattern embryonic rat skeletal muscle and motor neurons onto microfabricated silicon cantilevers creating a novel biological microelectromechanical system (BioMEMS) for studying muscle and the neuromuscular junction. This device was then used to study the effect of exogenously applied substances such as growth factors and toxins. Furthermore, a whispering-gallery mode (WGM) biosensor was developed for measuring the adsorption of various proteins onto glass microspheres coated with selected silane SAMS commonly used in BioMEMS system. With this biosensor it was possible to measure the kinetics of protein adsorption onto alkylsilane SAMS, in a real-time and label-free manner.
机译:微加工和表面化学技术的进步为创建体外系统提供了新的范例,该系统以以前不实际的方式研究生物学和医学问题。创建具有微米级至纳米级尺寸的设备的能力提供了以大吞吐量和高通量方式无创地询问和监测生物细胞和组织的机会。这些系统有可能及时改变以现场护理设备,芯片实验室设备和生物微机电系统(BioMEMS)形式研究生物学和医学问题的方式。使用新的体外模型,可以通过执行高通量实验,同时保持对各种实验变量的控制,来降低医学和生物学研究的总体成本。但是,开发这类系统的一个关键方面是控制设备/组织接口。细胞-生物材料相互作用和蛋白质-生物材料相互作用的表面化学对于此类设备的长期功效和功能至关重要。此处介绍的工作重点是表面化学和分析化学技术的应用,以更好地了解生物元素与二氧化硅的界面底物的研发以及用于研究肌肉和神经肌肉生物学的新型Bio-MEMS设备。基于聚乙二醇(PEG)硅烷自组装单分子膜(SAM)作为疏液性表面和胺端基硅烷二乙三胺(DETA)作为亲细胞性表面的新型表面图案化技术得以开发,用于对各种细胞进行图案化类型(例如骨骼肌和神经细胞)在很长一段时间(超过40天)内具有高保真度。然后,该方法用于将胚胎大鼠骨骼肌和运动神经元图案化到微加工的硅悬臂梁上,从而创建了一种用于研究肌肉和神经肌肉接头的新型生物微机电系统(BioMEMS)。然后使用该装置研究外源施加物质(例如生长因子和毒素)的作用。此外,还开发了一种耳语画廊模式(WGM)生物传感器,用于测量各种蛋白质在玻璃微球上的吸附,玻璃微球上涂有通常在BioMEMS系统中使用的选定硅烷SAMS。使用这种生物传感器,可以实时且无标记的方式测量蛋白质吸附到烷基硅烷SAMS上的动力学。

著录项

  • 作者

    Wilson, Kerry A.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Biology Cell.Engineering Biomedical.Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号