首页> 外文学位 >Thermal structure and geodynamics of subduction zones.
【24h】

Thermal structure and geodynamics of subduction zones.

机译:俯冲带的热结构和地球动力学。

获取原文
获取原文并翻译 | 示例

摘要

The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70--80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70--80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid for mantle wedge serpentinization in the forearc but little fluid for melt generation beneath the arc. In contrast, models for colder-slab subduction zones such as NE Japan and Kamchatka predict deeper dehydration, which provides greater fluid supply for melt generation beneath the arc and allows deeper occurrence of intraslab earthquakes but less fluid for forearc mantle wedge serpentinization. The common MDD also explains the intriguing uniform configuration of subduction zones, that is, the volcanic arc always tends to be situated where the slab is at about 100 km depth. The sudden onset of mantle wedge flow downdip of the common MDD overshadows the thermal effect of the slab, and the resultant thermal field and slab dehydration control the location of the volcanic arc. The recognition of the fundamental importance of the MDD has important implications to the study of geodynamics and earthquake hazard in subduction zones.
机译:俯冲带的热结构取决于俯冲板块和地幔楔流的年龄控制的热态。观测结果表明前臂地幔楔的浅部停滞,板-地幔界面减弱。本文通过二维有限元模拟和地质和地球物理观测的综合研究,研究了界面强度在控制地幔楔流,热结构和各种俯冲带过程中的作用。该模型表明,地幔强度的强温度依赖性始终会导致沿界面弱化部分的完整板-地幔解耦,从而使上覆地幔完全停滞。解耦区域立即下降的界面完全耦合,并且驱动上覆地幔以与俯冲速率兼容的速率流动。从解耦到耦合的过渡的清晰度取决于所假定的流变性,并且随着流动系统的非线性而增加。楔流的这种双峰行为在地幔楔的冷停和热流部分之间产生了强烈的热对比。因此,最大解耦深度(MDD)决定了前臂的热状态。观察到的地表热流模式以及在火山弧下的岩石和地球化学估算的地幔楔温度在大多数(即使不是全部)俯冲带都需要70--80 km的MDD,而不管其平板的热态如何。常见的70--80 km的MDD解释了所观察到的岩石,地震和火山过程随平板热状态的系统变化,从而以统一的方式解释了俯冲带的丰富多样性。诸如卡斯卡迪亚(Cascadia)和南开(Nankai)等温板俯冲带的模型预测,地幔楔的冷停滞部分下方的板块会发生浅层脱水,这为前臂中的地幔楔蛇形化提供了充足的流体,而在弧下却很少产生熔体。相比之下,日本东北部和堪察加半岛等较冷平板俯冲带的模型预测会出现更深的脱水,这将为弧线下方的熔体生成提供更多的流体供应,并使平板内部地震发生的深度更大,但前臂地幔楔形蛇纹岩化的流体较少。通用的MDD还解释了俯冲带的奇妙统一结构,即火山弧总是倾向于位于平板深度约100 km的地方。普通MDD的地幔楔流突然下降的突然出现掩盖了板坯的热效应,由此产生的热场和板坯脱水控制了火山弧的位置。认识到MDD的根本重要性,对俯冲带的地球动力学和地震灾害研究具有重要的意义。

著录项

  • 作者

    Wada, Ikuko.;

  • 作者单位

    University of Victoria (Canada).;

  • 授予单位 University of Victoria (Canada).;
  • 学科 Geology.Geophysics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号