首页> 外文学位 >Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides
【24h】

Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides

机译:波导中非线性量子光学的工程拟相位匹配

获取原文
获取原文并翻译 | 示例

摘要

Entanglement is the hallmark of quantum mechanics. Quantum entanglement---putting two or more identical particles into a non-factorable state---has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology.;The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation.;The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development. Quantum frequency conversion from 1848nm to 843nm is demonstrated for the first time, with >75% single-photon conversion efficiency. A new electric field poling methodology is presented, combining elements from multiple historical techniques with a new fast-feedback control system. This poling technique is used to fabricate the first chirped-and-apodized Type-II quasi-phase-matched structures in titanium-diffused lithium niobate waveguides, culminating in a measured phasematching spectrum that is predominantly Gaussian ( R2 = 0.80), nearly eight times broader than the unchirped spectrum, and agrees well with simulations.
机译:纠缠是量子力学的标志。量子纠缠(将两个或两个以上相同的粒子置于不可分解的状态)已被用于从量子计算,加密到高精度计量的各种应用。纠缠是一种实用的工程资源,也是避免传统测量和通信的某些局限性的工具。工程非线性光波导是一种用于生成纠缠光子对和操纵单光子状态的使能技术。这篇论文报告了:i)单光子从中红外到843nm的频率转换,作为将量子存储器整合到量子网络中的工具,ii)偏振和频率纠缠光子原型宽带光源的设计,制造和测试; iii)进一步研究该光源的路线图,包括在量子干涉测量法和高精度光学计量学中的应用。此处介绍的设备是准相位匹配的铌酸锂波导。铌酸锂是一种二阶非线性光学材料,可以介导将光能转换为不同的波长。这种非线性效应是量子频率转换和纠缠光子产生的基础,并且通过以下方式得到增强:i)将光限制在波导中以提高转换效率,以及ii)准相位匹配,这是一种通过工程化二阶非线性响应的技术。局部改变材料极化矢量的方向。波导是通过将钛扩散到铌酸锂晶片中而形成的。准相位匹配是通过电场极化实现的,具有多个阶段的工艺开发和优化,以制造宽带纠缠光子产生所需的精密结构。本文提供的结果更新并优化了以往的制造技术,展示了新颖的光学器件,并提出了建议设备开发的未来途径。首次展示了从1848nm到843nm的量子频率转换,单光子转换效率> 75%。提出了一种新的电场极化方法,将多种历史技术的要素与新的快速反馈控制系统结合在一起。这种极化技术用于在钛扩散的铌酸锂波导中制造第一个chi化的和切趾的II型准相位匹配结构,最终产生主要是高斯(R2 = 0.80)的近八倍的实测相位匹配谱。比未解谱的光谱更宽,并且与模拟非常吻合。

著录项

  • 作者

    Van Camp, Mackenzie A.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Optics.;Quantum physics.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号