首页> 外文学位 >Using noncanonical amino acids in computational protein design .
【24h】

Using noncanonical amino acids in computational protein design .

机译:在计算蛋白设计中使用非经典氨基酸。

获取原文
获取原文并翻译 | 示例

摘要

The structure of noncanonical amino acid (NCAA) side chains allows them to explore conformations inaccessible to canonical amino acids (CAAs). Peptides made of the D-enantiomers of amino acid backbones are resistant to proteolysis. The long term goal of this research is to adapt the current tools of computational protein design to create functional molecules be they proteins or not. In this thesis we have attempted the first steps toward this longer goal. The increased sequence and conformation space accessible to a protein during a design simulation when NCAAs are included, allows us to design tighter protein-protein interactions, with a higher degree of specificity.The computational protein design program Rosetta has been modified for compatibility with NCAAs. The use of knowledge-based potentials was the major hurdle as the potentials are based on statistics collected from known protein structures and few protein structures have been determined containing NCAAs.Using quantum mechanics (QM) calculations of the amino acids valine and isoleucine, with a helical conformation, we found an even distribution of rotamer preference. When that was used in rotamer recovery benchmarks, outperformed the knowledge-based potential that was biased because of long-range interactions imposed by the alpha-helical secondary structure. QM, although accurate and compatible with NCAAs was found to be too computationally expensive.We created a modified energy function that can evaluate the energy of both CAAs and NCAAs, where the knowledge-based energy potentials have been replaced with physically-based MM potentials that performs comparable to the stock energy function. We have developed methods to create rotamer libraries for both CAAs and NCAAs that are comparable to knowledge-based rotamer libraries. We have used these tools to create rotamer libraries for 88 different NCAAs that can now be used within Rosetta.The interface between calpain and the calpastatin peptide as well as the interface between HIV GP41 and the integration inhibitor, PIE12, developed by the Kay lab, has been redesigned using NCAAs to increase the binding affinity between the two pairs. The research has take protein design in a new direction and has enabled the development of novel protein interactions, and protein-like therapeutics.
机译:非规范氨基酸(NCAA)侧链的结构使他们能够探索规范氨基酸(CAA)难以接近的构象。由氨基酸骨架的D对映异构体制成的肽具有抗蛋白水解作用。这项研究的长期目标是使计算蛋白质设计的当前工具适应是否创建蛋白质的功能分子。在本文中,我们尝试了朝着这个更长远目标迈出的第一步。在包含NCAA的设计模拟过程中,蛋白质可获得的增加的序列和构象空间,使我们能够设计更紧密的蛋白质-蛋白质相互作用,并具有更高的特异性。对蛋白质的计算设计程序Rosetta进行了修改,以与NCAA兼容。使用基于知识的潜能是主要障碍,因为潜能是基于从已知蛋白质结构收集的统计数据,并且几乎没有蛋白质结构包含NCAA。使用量子力学(QM)计算氨基酸缬氨酸和异亮氨酸,并用螺旋构象,我们发现了旋转异构体偏好的均匀分布。当将其用于旋转异构体回收基准测试时,其性能优于基于知识的潜力,该潜力因α-螺旋二级结构所施加的远距离相互作用而存在偏差。 QM虽然精确且与NCAA兼容,但在计算上却过于昂贵。我们创建了改进的能量函数,可以评估CAA和NCAA的能量,其中基于知识的能量势已被基于物理的MM势所取代,表现与股票能源功能相当。我们已经开发了可为CAA和NCAA创建与基于知识的漫游器库可比的漫游器库的方法。我们已经使用这些工具为88种不同的NCAA创建了rotamer库,这些库现在可以在Rosetta中使用。钙蛋白酶与钙蛋白酶抑素肽之间的界面以及HIV GP41与整合抑制剂PIE12之间的界面(由Kay实验室开发)已经使用NCAA重新设计了NAA,以增加两对之间的结合亲和力。这项研究使蛋白质设计朝着新的方向发展,并使新型蛋白质相互作用和类蛋白质疗法的开发成为可能。

著录项

  • 作者

    Renfrew, P. Douglas.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号