首页> 外文学位 >Theoretical investigations of molecular wires: Electronic spectra and electron transport.
【24h】

Theoretical investigations of molecular wires: Electronic spectra and electron transport.

机译:分子线的理论研究:电子光谱和电子传输。

获取原文
获取原文并翻译 | 示例

摘要

The results of theoretical and computational research are presented for two promising molecular wires, the Nanostar dendrimer, and a series of substituted azobenzene derivatives connected to aluminum electrodes.The electronic absorption spectra of the Nanostar (a phenylene-ethynylene dendrimer attached to an ethynylperylene chromophore) were calculated using a sequential Molecular Dynamics/Quantum Mechanics (MD/QM) method to perform an analysis of the temperature dependence of the electronic absorption process. We modeled the Nanostar as a series of connected units, and performed MD simulations for each chromophore at 10 K and 300 K to study how the temperature affected the structures and, consequently, the spectra. The absorption spectra of the Nanostar were computed using an ensemble of 8000 structures for each chromophore. Quantum Mechanical (QM) ZINDO/S calculations were performed for each conformation in the ensemble, including 16 excited states, for a total of 128,000 excitation energies. The spectral intensity was then scaled linearly with the number of conjugated units. Our calculations for both the individual chromophores and the Nanostar, are in good agreement with experiments. We explain in detail the effects of temperature and the consequences for the absorption process.The second part of this thesis presents a study of the effects of chemical substituents on the electron transport properties of the azobenzene molecule, which has been proposed recently as a component of a light-driven molecular switch. This molecule has two stable conformations (cis and trans) in its electronic ground state, with considerable differences in their conductance. The electron transport properties were calculated using first-principles methods combining non-equilibrium Green's function (NEGF) techniques with density functional theory (DFT). For the azobenzene studies, we included electron-donating groups and electron-withdrawing groups in meta- and ortho-positions with respect to the azo group. The results showed that the molecular structure is crucial in optimizing the electron transport properties of chemical structures, and that the transport properties in electronic devices at the molecular level can be manipulated, enhanced or suppressed by a careful consideration of the effects of chemical modification.
机译:给出了两种有希望的分子线,Nanostar树枝状大分子和一系列连接到铝电极上的取代的偶氮苯衍生物的理论和计算研究结果.Nanostar(连接到乙炔基per发色团的亚苯基-乙炔树枝状大分子)的电子吸收光谱使用顺序分子动力学/量子力学(MD / QM)方法来计算电子,以对电子吸收过程的温度依赖性进行分析。我们将Nanostar建模为一系列相连的单元,并在10 K和300 K时对每个生色团进行了MD模拟,以研究温度如何影响结构,进而影响光谱。对于每个生色团,使用8000个结构的集合来计算Nanostar的吸收光谱。对该集合中的每个构象(包括16个激发态)执行了量子力学(QM)ZINDO / S计算,总共获得了128,000个激发能。然后,光谱强度与共轭单位数成线性比例关系。我们对单个生色团和Nanostar的计算与实验非常吻合。我们将详细解释温度的影响及其对吸收过程的影响。本论文的第二部分介绍了对化学取代基对偶氮苯分子电子传输性能的影响的研究,最近已提出该取代基是偶氮苯分子的一个组成部分。光驱动的分子开关。该分子在其电子基态下具有两个稳定的构象(顺式和反式),其电导率存在很大差异。使用第一原理方法,将非平衡格林函数(NEGF)技术与密度泛函理论(DFT)相结合,计算出电子传输性能。对于偶氮苯的研究,我们在相对于偶氮基的间位和邻位包括了供电子基团和吸电子基团。结果表明,分子结构对于优化化学结构的电子传输性能至关重要,并且通过仔细考虑化学修饰的影响,可以控制,增强或抑制电子器件在分子水平上的传输性能。

著录项

  • 作者

    Palma, Julio Leopoldo.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Chemistry Physical.Nanotechnology.Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号