首页> 外文学位 >Simulation-Optimization Modeling of Water Quality and Consequence Management in Contaminated Water Distribution Networks
【24h】

Simulation-Optimization Modeling of Water Quality and Consequence Management in Contaminated Water Distribution Networks

机译:污水分配管网水质仿真优化模型及后果管理

获取原文
获取原文并翻译 | 示例

摘要

Drinking water distribution networks (WDNs) are vulnerable to contamination because of their ubiquity, multiple points of access, and aging infrastructure. Looped characteristics and time varying flow patterns introduce additional challenges to identify the best response management strategy once the network is contaminated. Though intentional contamination of WDNs may be a relatively rare event, it is still important to prepare emergency responses to help mitigate the consequences and provide public assurance. The main drawback of the existing literature in consequence management is failure to consider pressure deficit conditions in the network which calls for an adaptive strategy, as system topology may change dynamically by implementing any new solution.;This research has two parts. The first part presents an optimization model to position water quality monitoring stations in a pressurized water distribution system (WDS). The optimization model is formulated as an integer program, and the solution of the mathematical problem is efficiently approximated using a multiobjective multi-colony ant algorithm. A built-in routine is developed for calculating the water fraction matrix and integrated into the general modeling structure to facilitate data entry and storage to minimize problems of water fraction matrix determination for varying scenarios and coverage criteria for any scenario. The proposed method is robust in analyzing the effects of different scenarios and/or number of potential monitoring stations by eliminating the need of employing an off-line routine for coverage matrix identification. Robustness, ease of generalization, multiobjective nature, and computational efficiency are the main characteristics and novelty of the proposed approach.;The second part presents an integrated simulation-optimization scheme for operational response management in an intentionally contaminated network. During consequence management, system topology may change from one decision point to another by varying valves and hydrants modes of operation. Modified topology may cause large negative pressures at different nodes if pre-specified demands are forced to be satisfied, which is exactly what happens in demand driven analysis (DDA). Discussing the drawbacks of demand driven network solvers in consequence management strategies, it integrates a pressure driven network solver (PDNS) with the multiobjective honey bees' mating optimization (HBMO) algorithm to develop single period and multi-period strategies. This study develops single and dynamic (multiple period) strategy. The dynamic strategy adjusts the decision at each stage per prevailing conditions. It accounts for time variation of demand at demand nodes and changes in flow direction and flux in new network topology from previous actions.;Solutions to the proposed multiobjective optimization problem generate a set of non-dominated optimal operational strategies which minimizes consequences of intentional physical attacks on water infrastructure systems. Each trial solution developed by the optimizer defines a new network topology due to modified modes of operation of nominated valves and hydrants. The PDNS finalizes the nodal pressure and modifies nodal withdraw for the identified trial solution. The PDNS is a modified version of the EPANET which handles changes in network topology while simulating networks with a pressure-deficit condition. Performance of the single-period and multiple-period modeling approach is illustrated using previously tested examples. It is shown that proposed multiple period strategy may reduce the negative impacts to public health, however, the computational time may introduce a new challenge in large networks.
机译:饮用水分配网络(WDN)普遍存在,多个接入点以及基础设施老化,因此很容易受到污染。环路特性和时变流模式带来了额外的挑战,一旦网络受到污染,就必须确定最佳的响应管理策略。尽管故意污染WDN可能是相对罕见的事件,但准备应急响应以帮助减轻后果并提供公众保证仍然很重要。现有结果管理文献的主要缺点是未能考虑网络中的压力不足状况,这需要一种自适应策略,因为系统拓扑可能会因实施任何新解决方案而动态变化。第一部分介绍了一种优化模型,用于在加压水分配系统(WDS)中定位水质监测站。该优化模型被公式化为一个整数程序,并且使用多目标多集群蚁群算法有效地近似了数学问题的解决方案。开发了一个内置例程来计算水分数矩阵,并将其集成到通用建模结构中,以方便数据输入和存储,以最大程度地减少针对各种场景和任何场景的覆盖标准确定水分数矩阵的问题。通过消除对覆盖矩阵识别采用离线例程的需要,所提出的方法在分析不同场景和/或潜在监视站的数量方面是鲁棒的。鲁棒性,易于推广,多目标性质和计算效率是该方法的主要特征和新颖性。第二部分提出了一种用于故意污染网络中的操作响应管理的集成仿真优化方案。在结果管理期间,系统拓扑可能会通过更改阀门和消防栓的操作模式从一个决策点更改为另一决策点。如果强制满足预先指定的需求,则修改后的拓扑可能会在不同的节点上引起较大的负压,这正是需求驱动分析(DDA)中发生的情况。讨论了需求驱动的网络求解器在后果管理策略中的弊端,将压力驱动的网络求解器(PDNS)与多目标蜜蜂的交配优化(HBMO)算法集成在一起,以开发单周期和多周期策略。这项研究开发了单一和动态(多个时期)的策略。动态策略会根据当前条件在每个阶段调整决策。它考虑了需求节点上需求的时间变化以及来自先前动作的新网络拓扑中流向和通量的变化。提出的多目标优化问题的解决方案生成了一组非支配的最优操作策略,该策略将有意物理攻击的后果降至最低在水基础设施系统上。优化程序开发的每个试用解决方案都通过修改指定阀门和消火栓的运行模式来定义新的网络拓扑。 PDNS最终确定了节点压力,并修改了已确定试验解决方案的节点撤回。 PDNS是EPANET的修改版本,可处理网络拓扑结构的变化,同时模拟压力不足的网络。使用先前测试的示例说明了单周期和多周期建模方法的性能。结果表明,提出的多周期策略可以减少对公共卫生的负面影响,但是,计算时间可能给大型网络带来新的挑战。

著录项

  • 作者

    Afshar, Amin.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Water resources management.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号