首页> 外文学位 >Phonon transport models for heat conduction in sub-micron geometries with application to microelectronics.
【24h】

Phonon transport models for heat conduction in sub-micron geometries with application to microelectronics.

机译:声子传输模型用于亚微米几何结构中的热传导并应用于微电子学。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, a new phonon Boltzmann transport equation (BTE) model, the anisotropic relaxation time phonon BTE model, is developed to address the simulation of sub-micron thermal transport. The full-scattering model directly computes three-phonon scattering interactions by enforcing energy and momentum conservation, and is computationally very expensive because it requires the evaluation of millions of scattering interactions during the iterative numerical solution procedure. The anisotropic relaxation time phonon BTE model developed in this dissertation employs a single-mode relaxation time idea, but the relaxation time is a function of wave-vector. The resulting model is significantly less expensive than the full-scattering model, but incorporates directional and dispersion behavior as well as relaxation times satisfying conservation rules.;A critical issue in the model development is the accounting for the role of three-phonon N scattering processes. Direct inclusion of N processes into the anisotropic relaxation time model is not possible because such an inclusion would engender thermal resistance. Instead, following Callaway, the overall relaxation rate is modified to include the shift in the phonon distribution function due to N processes. The anisotropic relaxation time phonon BTE model is validated by comparing the predicted bulk thermal conductivities of silicon and silicon thin-film thermal conductivities with experimental measurements. Self-heating in a metal-oxide-semiconductor field-effect transistor (MOSFET) is simulated using the new phonon BTE model assuming a prescribed heat source, and its predictions are compared with the full-scattering phonon BTE model. The results obtained from the two models are close, and suggest that the relaxation-time BTE may be used for practical device simulations.;Thermal transport in the MOSFET device due to electron-phonon scattering is simulated next, but now using phonon generation rates obtained from an electron Monte Carlo simulation of device by Aksamija. The Monte Carlo device simulation assumes that the electrons reside at the bottom of the conduction band. It uses the full phonon dispersion curves for 22 types of electron-phonon scattering events. Detailed profiles of phonon emission/absorption rates in the physical and momentum spaces are generated and are used in a MOSFET thermal transport simulation with the anisotropic relaxation time BTE model. At a source/drain voltage and a gate voltage of 1 V each, the total heat dissipation of the device from the electron Monte Carlo simulation is found to be 3197.9 W/m. The anisotropic relaxation time BTE simulation predicts a maximum temperature rise of 46.5 K; this is much higher than the Fourier prediction of the maximum temperature rise of 6.5 K. Heat fluxes leaving the boundaries associated with different phonon polarizations and frequencies are also examined to reveal the main modes responsible for transport.;Parallel computation schemes are developed for both the full-scattering phonon BTE model and the anisotropic relaxation time phonon BTE model. Two strategies are explored: spatial domain decomposition and phonon band decomposition. The parallel computations are first validated by comparing parallel simulation results with those obtained from serial simulations. The computation and communication times for different cases are investigated. The parallel performance of the full-scattering phonon BTE model exceeds that of the anisotropic relaxation time phonon BTE model because of the high local computational load. For the full-scattering phonon BTE model, the spatial domain decomposition strategy achieves better performance than the phonon band decomposition strategy because of the long message length associated with the later partitioning strategy. For the anisotropic relaxation BTE model, the performance of both the strategies is similar for the modest problem size tested in this dissertation. (Abstract shortened by UMI.)
机译:本文研究了一种新的声子玻尔兹曼输运方程模型,即各向异性弛豫时间声子BTE模型,以解决亚微米热传递的模拟问题。全散射模型通过强制能量和动量守恒直接计算三声子散射相互作用,并且在计算上非常昂贵,因为它需要在迭代数值求解过程中评估数百万个散射相互作用。本文提出的各向异性弛豫时间声子BTE模型采用单模弛豫时间思想,但弛豫时间是波矢量的函数。最终的模型比全散射模型便宜得多,但结合了方向性和色散行为以及满足守恒规则的弛豫时间。;模型开发中的一个关键问题是三声子N散射过程的作用。将N个过程直接包含到各向异性弛豫时间模型中是不可能的,因为这样的包含会产生热阻。取而代之的是,在卡拉威之后,修改了总体弛豫率,以包括由于N个过程导致的声子分布函数的偏移。各向异性弛豫时间声子BTE模型通过将预测的硅和硅薄膜的导热系数与实验测量值进行比较来验证。使用新的声子BTE模型(假设指定的热源),模拟了金属氧化物半导体场效应晶体管(MOSFET)中的自热,并将其预测与全散射声子BTE模型进行了比较。从这两个模型获得的结果很接近,表明弛豫时间BTE可以用于实际的器件仿真。;接下来模拟了由于电子-声子散射导致的MOSFET器件中的热传输,但现在使用获得的声子产生率来自Aksamija对设备进行的电子蒙特卡罗模拟。蒙特卡罗器件仿真假设电子驻留在导带的底部。它使用完整的声子色散曲线来处理22种类型的电子-声子散射事件。生成了物理空间和动量空间中声子发射/吸收速率的详细曲线,并将其用于具有各向异性弛豫时间BTE模型的MOSFET热传输模拟中。在源极/漏极电压和栅极电压分别为1 V的情况下,通过电子蒙特卡洛模拟得出的器件总散热量为3197.9 W / m。各向异性弛豫时间BTE模拟预测最大温度上升为46.5 K;这比6.5 K的最大温升的傅立叶预测要高得多。还检查了离开与不同声子极化和频率相关联的边界的热通量,以揭示负责传输的主要模式。全散射声子BTE模型和各向异性弛豫时间声子BTE模型。探索了两种策略:空间域分解和声子带分解。首先通过将并行仿真结果与从串行仿真获得的结果进行比较来验证并行计算。研究了不同情况下的计算和通信时间。由于高的局部计算负荷,全散射声子BTE模型的并行性能超过了各向异性弛豫时间声子BTE模型的并行性能。对于全散射声子BTE模型,由于与后面的划分策略相关的消息长度较长,因此空间域分解策略的性能要比声子频带分解策略更好。对于各向异性松弛BTE模型,在本文测试的中等问题规模下,两种策略的性能均相似。 (摘要由UMI缩短。)

著录项

  • 作者

    Ni, Chunjian.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号