首页> 外文学位 >Impact of surface tension on microchannel two-phase flow.
【24h】

Impact of surface tension on microchannel two-phase flow.

机译:表面张力对微通道两相流的影响。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the physics of microchannel two-phase flow is important for a broad variety of engineering applications. At the microscale, small Bond number, capillary number, and Weber number imply that the surface tension force dominates gravity, viscous force, and inertial force. Furthermore, in the confined space with complex geometry, such as porous media, the interaction between fluid phase and solid phase is of particular importance, and the surface hydrophobicity and the contact angle hysteresis effect play a significant role. In micro-devices such as a heat pipe and compact heat exchangers which involve the microchannel phase change process, the inter-phase mass transfer coupled with the interfacial force may further add to the complexity of the problem. This leads to many unique characteristics of microchannel two-phase flow.;The first component of this thesis develops a numerical model within the frame work of volume-fraction-method to simulate the contact angle hysteresis effect governing the microchannel two-phase flow. The model is validated against two engineering problems: The sidewall water injection in the microchannel, and the droplet detachment on a spinning plate. The comparison between model prediction and the experimental visualization shows that the incorporation of the contact angle hysteresis model can dramatically improve the accuracy of the volume-of-fraction simulation of the microchannel two-phase flow. The new model is also capable of capturing a number of physical phenomena governed the contact angle hysteresis effect, such as the instability of the slug transport in the microchannel.;The work is also dedicated to the development and validation of the capillary force model used for simulating the multiphase flow in porous with controlled hydrophobicity. The model is then applied to the simulation of boiling flow in the vapor-venting microchannel, which enables the phase separation and heat removal capacity enhancement. The simulation shows the vapor-escape process through the hydrophobic porous membrane in the vapor-venting channel as well as the dry-out process in the conventional channel. The benefits and problems of the vapor-venting microchannel design are clearly illustrated by predictions of flow pattern, pressure evolution, and temperature profile. The simulation tool shows a capability of guiding the design and optimization of the next generation vapor-venting micro heat exchanger.;Condensational microchannel two-phase flow is also dominated by the strong coupling between capillary force and phase change process. The last part of this thesis explores the impact of surface tension and channel hydrophobicity on the microchannel condensation. The small channel dimensions pose major challenges for experimental measurement. Here, a high speed imaging technique in conjunction with the interferometry is employed to study the flow pattern and construct the liquid-vapor interface in the hydrophilic microchannel of various dimensions. The measured exotic interface shape is compared with the prediction of a compact model allowing for the capillary-assisted liquid transfer effect. The agreement clearly shows the dominant effect of the surface tension on the condensational flow in microchannel. A 24-channel thermocouple array is developed to measure the local temperature distribution on the microchannel wall, from which the local heat flux distribution in the channel is constructed based on solving an inverse problem. The measurement indicates that channels with different hydrophobicities yield distinct heat flux profiles, a phenomenon attributed to the different heat transfer mechanisms dominating the hydrophobic and hydrophilic microchannels. The influence of channel dimension on the heat transfer characteristic is also investigated.
机译:了解微通道两相流的物理特性对于各种工程应用而言都很重要。在微观尺度上,较小的邦定数,毛细管数和韦伯数表示表面张力主导重力,粘性力和惯性力。此外,在具有复杂几何形状的密闭空间(例如多孔介质)中,液相和固相之间的相互作用尤为重要,并且表面疏水性和接触角滞后效应起着重要作用。在涉及微通道相变过程的诸如热管和紧凑型热交换器之类的微型设备中,相间质量传递与界面力相结合可能会进一步增加问题的复杂性。这导致了微通道两相流的许多独特特性。本论文的第一部分在体积分数方法框架内建立了一个数值模型,以模拟控制微通道两相流的接触角滞后效应。该模型针对两个工程问题进行了验证:微通道中的侧壁注水,以及旋转板上的液滴分离。模型预测与实验可视化之间的比较表明,接触角滞后模型的合并可以显着提高微通道两相流体积分数模拟的准确性。新模型还能够捕获控制接触角滞后效应的许多物理现象,例如微通道中团块传输的不稳定性。;该工作还致力于开发和验证用于模拟疏水性受控的多孔介质中的多相流。然后将该模型用于模拟在排气微通道中的沸腾流动,从而可以提高相分离和排热能力。模拟显示了在排气通道中通过疏水性多孔膜的逃逸过程以及在常规通道中的变干过程。排气微通道设计的优点和问题可以通过对流型,压力变化和温度曲线的预测来清楚地说明。该仿真工具显示了指导下一代蒸汽排放微型热交换器的设计和优化的能力。凝结微通道两相流还受到毛细作用力和相变过程之间的强耦合的支配。本文的最后一部分探讨了表面张力和通道疏水性对微通道缩合的影响。小通道尺寸对实验测量提出了重大挑战。在这里,结合干涉术的高速成像技术被用来研究流动模式并在各种尺寸的亲水性微通道中构造液体-蒸汽界面。将测得的奇异界面形状与紧凑模型的预测值进行比较,从而获得毛细管辅助的液体转移效果。该协议清楚地表明了表面张力对微通道中凝结流的主要影响。开发了一个24通道热电偶阵列来测量微通道壁上的局部温度分布,在此基础上,通过解决逆问题,可以构建通道中的局部热通量分布。测量结果表明,具有不同疏水性的通道会产生不同的热通量曲线,这是由于不同的传热机制主导了疏水性和亲水性微通道的现象。还研究了通道尺寸对传热特性的影响。

著录项

  • 作者

    Fang, Chen.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号