首页> 外文学位 >Heat transfer enhancement in thermoelectric power generation.
【24h】

Heat transfer enhancement in thermoelectric power generation.

机译:热电发电中的传热增强。

获取原文
获取原文并翻译 | 示例

摘要

Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of the TE material, the higher is the generation of electric power. However, high heat-transfer rate is difficult to achieve compactly when the hot and/or the cold sources are maintained by a flow of gas such as waste heat from the gas exhaust of an engine or a power plant. Also, when the temperature of the hot and the cold sources differs considerably, thermal stress can create damage and thereby affect reliability and service life.;In this study, computational fluid dynamics (CFD) analyses were performed to evaluate two compact gas-phase heat exchangers (HXs) on their ability to enable high heat-transfer rates from the hot to the cold sides of the TE material with minimal thermal stress. One HX utilizes the leading portion of developing momentum and thermal boundary layers, and the other HX involves jet impingement. The CFD analyses take into account the convection heat transfer of the hot gas in the HX flow passages and the conduction heat transfer in the HX walls, the TE materials, the electrical conducting plates, and the insulation material that fills the space between the TE material, the conducting plates, and the HX walls. Both laminar and turbulent flows in the HX flow passages were investigated. When the flow is turbulent, the analysis of the gas phase is based on the ensemble-averaged continuity, Navier-Stokes, and energy equations, closed by the realizable k-epsilon turbulence model that are integrated to the wall (i.e., wall functions were not used). The analysis of the solid phase is based on the Fourier law.;Results obtained show the two HX designs studied to be useful in increasing heat-transfer rate through the TE material with minimal thermal stresses. For the HX that utilizes the leading part of the boundary-layer flow, a heat-transfer rate of 1 W/cm2 could be achieved with reasonable pressure loss. For the HX with jet impingement, a heat-transfer rate of about 3 W/cm2 could be achieved but the pressure loss is considerably higher.
机译:传热在热电(TE)发电中起着重要作用,因为从TE材料的热侧到冷侧的传热速率越高,发电量就越高。然而,当热源和/或冷源通过诸如来自发动机或发电厂的排气装置的废热之类的气体流来保持时,难以紧凑地实现高传热率。同样,当热源和冷源的温度相差很大时,热应力也会造成损坏,从而影响可靠性和使用寿命。在本研究中,进行了计算流体力学(CFD)分析,以评估两种紧凑的气相热交换器(HXs)能够以最小的热应力实现从TE材料的热侧到冷侧的高传热速率。一个HX利用形成的动量和热边界层的主要部分,而另一个HX则利用射流撞击。 CFD分析考虑了HX流道中热气体的对流传热以及HX壁,TE材料,导电板和填充TE材料之间空间的绝缘材料中的传导热传递,导电板和HX壁。研究了HX流道中的层流和湍流。当流动湍流时,气相分析基于整体平均连续性,Navier-Stokes和能量方程式,并通过与壁集成的可实现的k-ε湍流模型封闭(即,壁函数为未使用)。固相的分析基于傅立叶定律。所获得的结果表明,所研究的两种HX设计可用于以最小的热应力提高通过TE材料的传热速率。对于利用边界层流前导部分的HX,可以在合理的压力损失下实现1 W / cm2的传热速率。对于具有射流冲击的HX,可以实现约3 W / cm2的传热速率,但压力损失要高得多。

著录项

  • 作者

    Hu, Shih-Yung.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Aerospace.
  • 学位 M.S.
  • 年度 2009
  • 页码 39 p.
  • 总页数 39
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:38:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号