首页> 外文学位 >An improved understanding of the lifecycle of mixed-phase stratiform clouds through observations and simulation.
【24h】

An improved understanding of the lifecycle of mixed-phase stratiform clouds through observations and simulation.

机译:通过观察和模拟,可以更好地理解混合相层状云的生命周期。

获取原文
获取原文并翻译 | 示例

摘要

This work explores links between ice crystal nucleation in the immersion mode and the lifecycle of mixed-phase stratiform clouds. A background discussion is included on the general properties of mixed-phase clouds, their influence on climate, observational techniques and numerical studies used to better understand them. Also, an overview of ice nucleation principles and Arctic aerosol characteristics is provided. An observational analysis including thousands of half hour cases of single layer mixed-phase clouds measured using remote sensors at Barrow, Alaska and Eureka, Canada is reviewed. An overview of the techniques used in this effort is provided, including information on the instruments and all implemented retrieval algorithms. These observations show distinct differences between cloud properties at the two locations, as well as clear seasonal patterns in cloud macro and microphysical properties. This dataset is compared with those obtained in previous studies, and implications of the measurements on numerical simulation and cloud detection using other observational platforms are discussed.;Utilizing results from these observations, as well as those from the work of others, a hypothesis on ice nucleation in these clouds via immersion freezing is formed, in which the concentration of soluble aerosol mass within liquid droplets results in a freezing point depression. Subsequent growth of these droplets dilutes the concentration of soluble mass, and the droplet can freeze. In order to test this hypothesis, an advanced numerical model is utilized. Simulation results show that immersion freezing does contribute significantly to ice production within mixed-phase clouds. Additionally, the soluble mass fraction assumed for the aerosol particles impacts simulated clouds via the effect discussed above. However, unlike suggested in the presented hypothesis, nucleation through the immersion mode was not limited to the regions above updrafts in the completed simulations. Instead, a combination of soluble mass fraction and temperature variations resulted in immersion freezing occurring throughout the top of the simulated cloud layer. A application of information on Arctic aerosols and ice nucleus measurements leads to a realistic simulation which maintained a mixed-phase cloud for over 16 hours. Finally, discussions on model uncertainties, future work and a summary are provided.
机译:这项工作探索了在浸没模式下冰晶成核与混合相层状云生命周期之间的联系。对混合相云的一般性质,它们对气候的影响,观测技术和用来更好地理解它们的数值研究进行了背景讨论。此外,还提供了冰成核原理和北极气溶胶特征的概述。本文对一项观测分析进行了回顾性分析,其中包括使用加拿大阿拉斯加州巴罗市和尤里卡市的遥感仪测量的数千个半小时单层混合相云的案例。提供了用于此工作的技术概述,包括有关仪器的信息和所有已实现的检索算法。这些观察结果显示了两个位置的云特性之间的明显差异,以及云宏观和微观物理特性的明显季节性模式。将该数据集与先前研究中获得的数据集进行比较,并讨论了测量值对使用其他观测平台的数值模拟和云探测的意义。;利用这些观测结果以及其他工作得出的结果,对冰进行假设这些云通过浸没冷冻形成核,其中液滴中的可溶性气溶胶质量浓度导致冰点降低。这些小滴的后续生长会稀释可溶性物质的浓度,并且小滴会冻结。为了检验该假设,使用了高级数值模型。仿真结果表明,浸没式冷冻确实对混合相云内的冰产生有显着贡献。另外,假定为气溶胶颗粒的可溶性质量分数通过上述作用影响模拟云。但是,与所提出的假设不同的是,在完全模拟中,通过浸没模式的成核作用不限于上升气流上方的区域。取而代之的是,可溶质量分数和温度变化的组合导致在整个模拟云层顶部均发生浸没冻结。北极气溶胶和冰核测量信息的应用导致了逼真的模拟,该模拟将混合相云维持了16个小时以上。最后,提供了关于模型不确定性的讨论,未来的工作和摘要。

著录项

  • 作者

    de Boer, Gijs.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号