首页> 外文学位 >Cellular and molecular mechanisms of toxin resistance for endoplasmic reticulum translocating toxins.
【24h】

Cellular and molecular mechanisms of toxin resistance for endoplasmic reticulum translocating toxins.

机译:内质网易位毒素的毒素抗性的细胞和分子机制。

获取原文
获取原文并翻译 | 示例

摘要

The endoplasmic reticulum (ER) is the site of co- and post-translational modification for secretory proteins. In order to prevent vesicular transport and secretion of misfolded or misassembled proteins, a highly regulated mechanism called ER-associated degradation (ERAD) is employed. This pathway recognizes misfolded proteins in the ER lumen and targets them to the cytosol for ubiquitination and subsequent degradation via the 26S proteasome. Sec61 and Derlin-1 are ER pores through which export occurs. AB-type protein toxins such as cholera toxin (CT), Shiga toxin (ST), exotoxin A (ETA), and ricin have evolved means of exploiting the ERAD pathway in order to reach their cytosolic targets. AB-type protein toxins consist of a catalytic A-subunit and a cell-binding B-subunit. The B-subunit recognizes cell surface receptors for the toxin. This begins a series of vesicle trafficking events, collectively termed retrograde trafficking, that lead to the ER. Dissociation of the A and B subunits occurs in the ER, and only the A subunit enters the cytosol. The exact mechanism of A subunit translocation from the ER to the cytosol is unknown.;Toxin translocation occurs through a pore in the ER membrane. Exit through the pore requires the toxin to be in an unfolded conformation. The current model for toxin translocation proposes that ER chaperones actively unfold the toxin A chain for translocation. After the translocation event, the toxin spontaneously refolds to an active conformation. Our model suggests that unfolding in the ER is spontaneous and refolding in the cytosol is dependent upon cytosolic chaperones. Based on our model, we hypothesize that blockage of the A subunit unfolding and/or the ERAD translocation step will confer a phenotype of non-harmful multi-toxin resistance to cells. In support of this model, we have shown that, at 37°C, the isolated catalytic subunit of cholera toxin (CTA1) is in an unfolded and protease sensitive confirmation that identifies the toxin as misfolded by the ERAD pathway. Stabilization of CTA1 via glycerol inhibits the loss of its tertiary structure. This stabilization results in decreased translocation from the ER to the cytosol and increased secretion of CTA1 to the extracellular medium. Treatment with glycerol also prevents CTA1 degradation by the 20S proteasome in vitro. These data indicate that the thermal stability of CTA1 plays an important role in intoxication. These data also suggest that stabilization of CTA1 tertiary structure is a potential target for therapeutic agents.;Our model asserts that CTA1 behaves as a normal ERAD substrate upon dissociation from the holotoxin. In support of this model, we have shown that the ER luminal protein HEDJ, known to be involved in ERAD, interacts with CTA1. The interactions between HEDJ and CTA1 occur only at temperatures in which the toxin is in an unfolded conformation. We have also shown that HEDJ does not affect the thermally stability of CTA1 since there is no alteration in its pattern of temperature-dependent protease sensitivity. Alteration of the normal HEDJ-CTA1 interaction via a dominant-negative HEDJ construct resulted in decreased translocation from the ER to the cytosol and, as a result, decreased intoxication.;Our work demonstrated toxin resistance can result through effects on toxin structure or ERAD chaperones. To identify other potential inhibitors, we developed a novel assay to detect the activity of other AB toxins and compared it with an established toxicity assay. We generated a Vero cell line that expressed a destabilized variant of enhanced green fluorescent protein (EGFP). These cells were used to monitor the Stx-induced inhibition of protein synthesis by monitoring the loss of EGFP fluorescence from cells. We screened a panel of 13 plant compounds, and indentified grape seed extract and grape pomace extract as inhibitors of Stx activity. Grape seed extract and grape pomace extract were also shown to block the toxic activities of ETA and ricin, providing the basis for a future high-throughput screen for multi-toxin inhibitors.
机译:内质网(ER)是分泌蛋白的共翻译和翻译后修饰的位点。为了防止囊泡运输和错误折叠或错误组装的蛋白质的分泌,采用了称为ER相关降解(ERAD)的高度调节的机制。该途径可识别ER内腔中错误折叠的蛋白质,并将其靶向细胞溶质,以进行泛素化并随后通过26S蛋白酶体降解。 Sec61和Derlin-1是通过出口发生的ER孔。 AB型蛋白质毒素,例如霍乱毒素(CT),志贺毒素(ST),外毒素A(ETA)和蓖麻毒蛋白,已经进化出利用ERAD途径来达到其胞质靶标的手段。 AB型蛋白毒素由催化性A亚基和与细胞结合的B亚基组成。 B亚基识别毒素的细胞表面受体。这开始了一系列囊泡运输事件,统称为逆行运输,导致了急诊室。 A和B亚基的解离发生在ER中,只有A亚基进入细胞质。从ER到细胞质中A亚基易位的确切机理尚不清楚。毒素易位通过ER膜的孔发生。通过毛孔出口需要毒素处于未折叠状态。当前的毒素易位模型提出,ER伴侣可以主动展开毒素A链进行易位。易位事件后,毒素自发地重折叠成活性构象。我们的模型表明,ER中的折叠是自发的,而胞质溶胶中的折叠取决于胞质伴侣。基于我们的模型,我们假设A亚基的解折叠和/或ERAD易位步骤将赋予细胞无害的多毒素抗性表型。为支持该模型,我们显示了在37°C时,霍乱毒素(CTA1)的分离的催化亚基处于未折叠且对蛋白酶敏感的确认状态,可确认该毒素被ERAD途径错误折叠。通过甘油稳定CTA1可抑制其三级结构的损失。这种稳定作用导致从ER到胞质溶胶的转运减少,以及CTA1向细胞外培养基的分泌增加。甘油处理还可以防止CTA1在体外被20S蛋白酶体降解。这些数据表明,CTA1的热稳定性在中毒中起着重要作用。这些数据还表明,稳定CTA1三级结构是治疗药物的潜在目标。;我们的模型断言,从全毒素解离后,CTA1表现为正常的ERAD底物。为了支持该模型,我们显示了已知与ERAD相关的ER腔蛋白HEDJ与CTA1相互作用。 HEDJ和CTA1之间的相互作用仅在毒素呈展开构型的温度下发生。我们还显示,HEDJ不会影响CTA1的热稳定性,因为其温度依赖性蛋白酶敏感性的模式没有改变。通过显性阴性HEDJ构建体改变正常的HEDJ-CTA1相互作用,导致从ER到胞质溶胶的转运减少,并因此减少了中毒;;我们的研究表明,毒素抗性可以通过影响毒素结构或ERAD伴侣而产生。为了鉴定其他潜在的抑制剂,我们开发了一种新颖的测定法来检测其他AB毒素的活性,并将其与已建立的毒性测定法进行比较。我们生成了表达增强的绿色荧光蛋白(EGFP)的不稳定变体的Vero细胞系。这些细胞用于通过监测细胞中EGFP荧光的丧失来监测Stx诱导的蛋白质合成抑制。我们筛选了一组13种植物化合物,并确定了葡萄籽提取物和葡萄渣提取物是Stx活性的抑制剂。葡萄籽提取物和葡萄渣提取物也被证明可以阻止ETA和蓖麻毒蛋白的毒性,为未来多毒素抑制剂的高通量筛选提供基础。

著录项

  • 作者

    Massey, Christopher Shane.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Biology Molecular.;Biology Cell.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号