首页> 外文学位 >Exploiting structural disorder to enhance small molecule inhibition of the oncoprotein c-Myc dimerization with its partner Max.
【24h】

Exploiting structural disorder to enhance small molecule inhibition of the oncoprotein c-Myc dimerization with its partner Max.

机译:利用结构紊乱增强小分子对癌蛋白c-Myc二聚体的抑制作用。

获取原文
获取原文并翻译 | 示例

摘要

The transcription factor c-Myc, in its normal function, is involved in cell cycle regulation. The uncontrolled cell proliferation consequent to c-Myc deregulation is typical of cancer and neoplastic diseases. Most known functions of c-Myc depend upon the dimerization between its basic-helix-loop-helix-leucine zipper (bHLHZip) domain and a similar domain within the partner protein Max. Small molecules capable of specifically and selectively disrupting the c-Myc-Max interaction have been reported. Because of c-Myc's involvement in cancer, the inhibition of its dimer formation with Max is a promising way to down-regulate its activity for therapeutic purposes. Small molecules interfering with c-Myc-Max dimer formation must directly interact with one or both protein monomers. These monomers are intrinsically disordered and lack a stable structure, as they undergo coupled folding and binding and they assume a defined structure only upon dimerization. The possibility of directly targeting disordered proteins with small molecules has not yet been broadly considered. In the studies described here, recombinant c-Myc, Max and derived peptides were employed in purified component assays based on several biophysical techniques, including fluorescence polarization, circular dichroism, and gel electrhophoresis, to elucidate the mechanism of action of small molecule inhibitors of c-Myc-Max dimer formation originally described by the Prochownik lab at the Children's Hospital, Pittsburgh. The synthesis of several modified small molecules further allowed for structure-activity studies. It was found that these compounds bind in a plastic mode to short segments of the c-Myc bHLHZip domain. NMR spectroscopy was employed to collect structural information about the studied complexes, confirming their dynamic nature. It is hypothesized that the combined presence of hydrophobic residues and low sequence conservation make such sites prone to specific small molecule binding. The different location of binding sites on c-Myc was found to result in different mechanisms of disruption of c-Myc-Max dimers. The presence of HLZip dimerization equilibria competing with c-Myc-Max dimerization was found to facilitate the inhibition of the latter. The multiple binding sites on c-Myc were further exploited in the design of bivalent inhibitors which interact with two such sites and display enhanced affinity for c-Myc.
机译:转录因子c-Myc以其正常功能参与细胞周期调控。 c-Myc失调导致的不受控制的细胞增殖是癌症和赘生性疾病的典型特征。 c-Myc的大多数已知功能取决于其基本螺旋-环-螺旋-亮氨酸拉链(bHLHZip)域与伴侣蛋白Max中类似域之间的二聚化。已经报道了能够特异性和选择性地破坏c-Myc-Max相互作用的小分子。由于c-Myc参与了癌症,因此用Max抑制其二聚体形成是一种下调其治疗活性的有前途的方法。干扰c-Myc-Max二聚体形成的小分子必须直接与一种或两种蛋白质单体相互作用。这些单体本质上是无序的并且缺乏稳定的结构,因为它们经历偶联的折叠和结合并且仅在二聚化时才呈现确定的结构。用小分子直接靶向无序蛋白的可能性尚未得到广泛考虑。在此处描述的研究中,重组c-Myc,Max和衍生肽用于基于多种生物物理技术(包括荧光偏振,圆二色性和凝胶电泳)的纯化成分测定中,以阐明c的小分子抑制剂的作用机理-Myc-Max二聚体的形成最初由匹兹堡儿童医院的Prochownik实验室描述。几种修饰的小分子的合成进一步允许进行结构活性研究。发现这些化合物以塑性方式结合到c-Myc bHLHZip结构域的短片段上。核磁共振波谱法用于收集有关研究复合物的结构信息,从而确认其动态性质。假设疏水残基的结合存在和低序列保守性使这些位点易于特异性结合小分子。发现c-Myc上结合位点的不同位置导致破坏c-Myc-Max二聚体的不同机制。发现与c-Myc-Max二聚化竞争的HLZip二聚化平衡的存在促进了后者的抑制。 c-Myc上的多个结合位点被进一步用于设计与两个这样的位点相互作用并显示出对c-Myc亲和力增强的二价抑制剂。

著录项

  • 作者单位

    Georgetown University.;

  • 授予单位 Georgetown University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 321 p.
  • 总页数 321
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号