首页> 外文学位 >Spatial and temporal variation in the structure of stream food webs: Investigating the effects of shifting basal resources and predation from a top predator, the river otter (Lontra canadensis).
【24h】

Spatial and temporal variation in the structure of stream food webs: Investigating the effects of shifting basal resources and predation from a top predator, the river otter (Lontra canadensis).

机译:流食网结构的时空变化:调查基础资源的转移和捕食顶级水獭(Lontra canadensis)的掠食的影响。

获取原文
获取原文并翻译 | 示例

摘要

Predation is an important factor structuring the abundance and distribution of organisms in aquatic communities. However, the relative contribution of biotic interactions and environmental conditions, in terms of the structure and function of ecosystems, is highly variable. In addition, the availability and source of energy resources will impact trophic dynamics and interaction strengths among community components. For example, large detrital reservoirs may stabilize consumer-resource dynamics in harsh environments. My objectives were to quantify spatial and temporal variation in stream food webs and predator-prey dynamics in the Mulberry River Drainage of northwest Arkansas, U.S.A. I examined shifts in the trophic base of stream food webs using stable isotope ratio analysis (13C/12C and 15 N/14N, circular statistics, and mixing models. I predicted that communities would shift from autochthonous resources in the spring and summer to autochthonous resources in the winter due to increased leaf inputs in the autumn. In addition, I predicted that autochthonous resources would be more important at sites with larger watersheds and greater canopy openness. In terms of predator-prey dynamics, I examined how an apex predator, the river otter (Lontra canadensis), impacted fish and crayfish populations. In particular, I integrated data on prey availability, diet, and field metabolic rate to estimate otter consumption in a bioenergeties framework. I trapped crayfish monthly as an index of crayfish availability to otter predation. Otter diet was assessed from scat samples collected seasonally and by stable isotope analysis of whole-prey signatures and otter plasma samples. Muscle samples from carcasses were also collected for stable isotope analysis during the winter trapping season. In addition, I estimated daily energy expenditure in wild otters inhabiting a pond enclosure using the doubly labeled water method. I predicted that otters would consume a greater proportion of fish during the winter and spring corresponding to low crayfish availability. Finally, I conducted mesocosm (predator exclusions) and tethering experiments in pool habitats during low flows to examine the effects of aquatic and terrestrial predators on central stoneroller (Campostoma anomalum) and crayfish (Orconectes meeki) survival in intermittent streams. I tested the hypothesis that large fish are at greater risk from terrestrial predators in shallow habitats compared to small fish. In addition, I tested the hypothesis that crayfish survival is maximized by small and large individuals in shallow and deep habitats, respectively. Results demonstrated substantial spatial and temporal variation in the trophic base of intermittent stream food webs and detritus was a major energy pathway that likely contributed to community resistance and resilience to disturbance. Prey availability and diet varied seasonally and otters demonstrated elevated metabolic demand and consumption rates suggesting potentially strong effects on prey populations. The mesocosm experiment demonstrated a negative effect of terrestrial predators on central stoneroller survival. In terms of size effects, predation risk was greater for large individuals. Finally, I did not detect a depth effect with the crayfish tethering experiment and small crayfish demonstrated increased mortality compared to large crayfish in both shallow and deep treatments. Although predator effects were demonstrated experimentally, more studies are needed to examine how multiple predators and environmental heterogeneity interact to structure aquatic ecosystems. Identifying factors that regulate community structure will be critical for predicting predator-prey dynamics and ecosystem responses to natural and anthropogenic perturbations.
机译:捕食是构成水生生物群落丰富和分布的重要因素。但是,就生态系统的结构和功能而言,生物相互作用和环境条件的相对贡献是高度可变的。此外,能源的可利用性和来源将影响营养动态和社区各组成部分之间的相互作用强度。例如,大型碎屑储层可以在恶劣的环境中稳定消费者资源的动态。我的目标是量化美国西北部阿肯色州桑树河流域中下游食物网的时空变化和捕食者-猎物的动态。我使用稳定同位素比分析(13C / 12C和15检验了下游食物网营养层的变化N / 14N,循环统计和混合模型,我预测由于秋季叶片输入的增加,社区将从春季和夏季的本地资源转移到冬季的本地资源,此外,我预测本地资源将是在具有更大分水岭和更大冠层开放性的地点上,这一点尤为重要。就捕食者-捕食者的动力学而言,我研究了尖顶捕食者,水獭河(Lontra canadensis)如何影响鱼类和小龙虾种群,尤其是我整合了关于猎物可用性的数据,饮食和田间代谢率来估计生物能源框架中的水獭消耗。我每月将小龙虾作为小龙虾可利用性的指标来捕获对水獭的捕食。通过季节性收集的粪便样本以及整个猎物特征和水獭血浆样本的稳定同位素分析来评估水獭的饮食。在冬季诱捕季节,还收集了from体的肌肉样品,以进行稳定的同位素分析。此外,我使用双标签水法估算了居住在池塘围栏中的野生水獭的日常能源消耗。我预测,由于小龙虾的利用率低,在冬季和春季,水獭会消耗更多的鱼类。最后,我在池水生境低流量期间进行了介观(捕食者除外)和系留实验,以研究水生和陆地捕食者对间歇性溪流中中央滚石(Campostoma anomalum)和小龙虾(Orconectes meeki)生存的影响。我检验了以下假设:与小鱼相比,大鱼在浅水生境中受到陆地掠食者的风险更大。此外,我检验了以下假设:小个体和大个体分别在浅海和深海生境中使小龙虾的生存最大化。结果表明,间歇性水流网的营养基础存在时空变化,碎屑是主要的能量途径,可能有助于社区抵抗和抵御干扰。猎物的可获得性和饮食随季节而变化,水獭显示出新陈代谢的需求和消耗率升高,表明对猎物种群有潜在的强大影响。中观实验证明了地面掠食者对中央滚石生存的负面影响。就规模效应而言,大型个体的捕食风险更大。最后,在小龙虾的束缚实验中,我没有发现深度影响,在浅层和深层处理中,小龙虾的死亡率都比大龙虾高。尽管通过实验证明了捕食者的影响,但仍需要进行更多的研究,以检验多种捕食者和环境异质性如何相互作用来构造水生生态系统。确定调节群落结构的因素对于预测捕食者-猎物的动态以及生态系统对自然和人为扰动的反应至关重要。

著录项

  • 作者

    Dekar, Matthew P.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Agriculture Wildlife Management.;Biology Limnology.;Biology Ecology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号