首页> 外文学位 >Application of laser-based diagnostics for nanomaterials synthesis.
【24h】

Application of laser-based diagnostics for nanomaterials synthesis.

机译:基于激光的诊断技术在纳米材料合成中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Spectroscopic laser-based diagnostics are applied in the gas-phase synthesis of nanostructrued materials to make non-intrusive, in-situ, spatially-precise measurements of gas-phase temperatures and relevant chemical species. For the nanomaterials themselves, a novel application of Raman spectroscopy is developed to characterize nanoparticles in-situ, during flame and plasma synthesis. As result, the local conditions for gas-phase synthesis can be determined for a given nanomaterial property, so that fundamental mechanisms can be revealed and process conditions can be optimized.;The synthesis configurations investigated in this work are (i) the inverse co-flow diffusion flame (IDF), (ii) the counter-flow diffusion flame (CDF), (iii) the low-pressure burner-stabilized premixed stagnation-point flame, and (iv) the inductively-coupled plasma (ICP) impinging on a cold substrate.;Spontaneous Raman spectroscopy (SRS) is used to measure local gas-phase conditions in the 2-D axi-symmetric IDF and the quasi 1-D CDF, where nanomaterials are grown on inserted substrates of various compositions. Nitrogen-diluted methane-air flames are examined. Carbon nanotubes (CNTs) are grown catalytically on metal-alloy substrates, and their morphologies are correlated with the local gas-phase temperature and the concentrations of carbon-based precursor species (e.g. C2H2, CO). Zinc oxide (ZnO) nanostructures are grown directly on zinc-plated steel substrates, and their morphologies are correlated with the local gas-phase temperature and the concentrations of oxidative (e.g. O2, H2O, and CO2) and reducing (e.g. H2) species. Computational simulations in 1-D, involving detailed chemical kinetics and transport properties, and in 2-D, using simplified kinetics and transport, are used to validate and improve the measurements.;Laser-induced fluorescence (LIF) is employed to measure the gas-phase temperature profile and OH radical species concentration distribution in a low-pressure, premixed, nitrogen-diluted hydrogen-oxygen, burner-stabilized, stagnation-point flame. Titania nanoparticles are synthesized using a metalorganic precursor. The LIF measurements are compared with computational simulations with detailed chemical kinetics and transport, to affirm the quasi 1-D flow field, as well as to investigate the effects of precursor addition and uniform electric-field application.;SRS is utilized to characterize in-situ the composition and crystallinity of nanoparticles, in aerosol form, produced in the aforementioned low-pressure premixed flame and in the ICP synthesis setup. The Stokes spectra are identified for crystalline phases of TiO2 (and Al2O 3 in a different flame setup) and c-BN based on ex-situ-taken spectra from the literature. The in-situ technique is able to delineate the phase conversion of nanoparticles (including amorphous to crystalline) as they evolve in the flow field.
机译:基于光谱的激光诊断技术被用于纳米结构材料的气相合成中,以对气相温度和相关化学物质进行非侵入式,原位,空间精确的测量。对于纳米材料本身,开发了拉曼光谱学的新应用以在火焰和等离子体合成过程中原位表征纳米颗粒。结果,对于给定的纳米材料特性,可以确定气相合成的局部条件,从而可以揭示基本机理并可以优化工艺条件。这项工作中研究的合成构型是(i)逆共-流扩散火焰(IDF),(ii)逆流扩散火焰(CDF),(iii)低压燃烧器稳定的预混合滞留点火焰和(iv)撞击在其上的感应耦合等离子体(ICP)自发拉曼光谱法(SRS)用于测量2-D轴对称IDF和准1-D CDF中的局部气相条件,其中纳米材料生长在各种成分的插入衬底上。检查了氮气稀释的甲烷-空气火焰。碳纳米管(CNT)在金属合金基底上催化生长,其形态与局部气相温度和碳基前体物质(例如C2H2,CO)的浓度相关。氧化锌(ZnO)纳米结构直接在镀锌钢基材上生长,其形貌与局部气相温度以及氧化性(例如O2,H2O和CO2)和还原性(例如H2)物种的浓度相关。一维的计算模拟涉及详细的化学动力学和传输特性,而二维的计算模拟则使用简化的动力学和传输来验证和改进测量结果;激光诱导荧光(LIF)用于测量气体低压,预混合,氮气稀释的氢氧,燃烧器稳定的停滞点火焰中的三相温度曲线和OH自由基种类浓度分布。使用金属有机前体合成二氧化钛纳米颗粒。将LIF测量值与具有详细化学动力学和输运的计算模拟进行比较,以确认准一维流场,并研究前体添加和均匀电场施加的影响。在上述低压预混火焰和ICP合成装置中原位产生的气溶胶形式纳米颗粒的组成和结晶度。基于文献中的异位光谱,可以确定TiO2(和Al2O 3在不同的火焰环境下)和c-BN的晶相的斯托克斯光谱。原位技术能够描述纳米颗粒(包括无定形到晶体)在流场中演化时的相变。

著录项

  • 作者

    Liu, Xiaofei.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号