首页> 外文学位 >Quantum transport model bridging from atomistic-scale to micro-scale devices.
【24h】

Quantum transport model bridging from atomistic-scale to micro-scale devices.

机译:从原子级设备到微米级设备的量子传输模型。

获取原文
获取原文并翻译 | 示例

摘要

As the size of CMOS devices keeps shrinking more and more, power dissipation has become one of the major challenges for scaling. In fact, it has been suggested that the scaling may stop long before we reach any fundamental barriers because of our inability to remove the heat generated in these devices. This has stimulated significant efforts to look for novel devices that are fundamentally different in operating principle. In this thesis, we have explored the physics underlying non-equilibrium phenomena recently observed in both spintronics and graphene-based electronics, while examining their potential applications for practical devices. Understanding new phenomena thoroughly would lead us to the possibility of designing a new generation of device with better characteristics.;The Non-equilibrium Green function (NEGF) method is being widely used to model coherent quantum transport where it is equivalent to the Landauer approach. However, exploring the physics of novel phenomena and devices needs a model considering dephasing processes which bridges the entire range from the atomistic to diffusive regime. As part of this thesis, a novel dephasing model in quantum transport has been developed which provides the flexibility of adjusting the degree of phase, momentum and spin relaxation independently while retaining the conceptual and numerical simplicity of other phenomenological models. Using this dephasing model, a number of devices and phenomena such as spin-Hall effect have been explored continuously from ballistic to diffusive regime. In diffusive regime our simulation results are in good agreement with the experimental results. We have also developed a correspondence between intrinsic spin-Hall effect and ordinary Hall effect. For graphene-based electronics device, we have benchmarked our model successfully in Quantum Hall regime with experiments. From our work on graphene-based electronics, we have predicted the importance of contact-induced states in extracting transport properties of graphene. Recently, our predictions in this regard have been confirmed by two sets of experiments. We have also analyzed transport in doped graphene field effect transistors. Our analysis has revealed the origin of the doping-induced asymmetry observed experimentally in electron and hole conductance. We have predicted two different types of conductance asymmetry based on the nature of doping.
机译:随着CMOS器件尺寸的不断缩小,功耗已成为扩展规模的主要挑战之一。实际上,由于无法清除这些设备中产生的热量,有人建议在达到任何基本障碍之前很久就可以停止缩放。这激发了人们在寻找工作原理上根本不同的新颖设备上的巨大努力。在本文中,我们研究了自旋电子学和石墨烯基电子学中最近观察到的非平衡现象的物理基础,同时研究了它们在实际设备中的潜在应用。透彻理解新现象将使我们有可能设计出具有更好特性的新一代设备。非平衡格林函数(NEGF)方法被广泛用于建模相干量子传输,与Landauer方法等效。但是,探索新颖现象和装置的物理原理需要一个考虑相移过程的模型,该相移过程将从原子态到扩散态的整个范围桥接起来。作为本文的一部分,开发了一种新型的量子传输相移模型,该模型提供了独立调整相,动量和自旋弛豫程度的灵活性,同时保留了其他现象学模型的概念和数值简化。使用这种移相模型,已经从弹道状态到扩散状态不断探索了许多装置和现象,例如自旋霍尔效应。在扩散状态下,我们的仿真结果与实验结果非常吻合。我们还开发了固有自旋霍尔效应和普通霍尔效应之间的对应关系。对于基于石墨烯的电子设备,我们已经通过实验在量子霍尔机制中成功对模型进行了基准测试。通过我们在基于石墨烯的电子学方面的工作,我们已经预测了接触诱导态在提取石墨烯的传输特性中的重要性。最近,我们在这方面的预测已通过两组实验得到证实。我们还分析了掺杂石墨烯场效应晶体管中的传输。我们的分析揭示了在电子和空穴电导中实验观察到的掺杂诱导的不对称性的起源。我们已经根据掺杂的性质预测了两种不同类型的电导不对称性。

著录项

  • 作者

    Golizadeh-Mojarad, Roksana.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号