首页> 外文学位 >Spray modeling and measurements for pharmaceutical tablet coating applications.
【24h】

Spray modeling and measurements for pharmaceutical tablet coating applications.

机译:药物片剂包衣应用的喷雾建模和测量。

获取原文
获取原文并翻译 | 示例

摘要

A method of spray modeling and measurements for pharmaceutical pan tablet coating applications is proposed. It consists of (1) spatially resolved spray characterization and (2) computational predictions of subsequent spray evolution using CFD. Both (1) and (2) are in line with PAT guidelines that emphasize process understanding and analytical process design.;(1) utilizes a dual-mode Phase Doppler Anemometry (PDA) system. Data are obtained at multiple points covering the entire spray cross-sectional area. Measurements are validated by ensuring that PDA-measured mass flowrate matches measured mass flowrate and by comparing PDA-calculated absorptances to the optical patternator measured ones.;Experimental data show that drop size, velocity, and volume flux vary spatially throughout a spray cross-sectional area. Spatial variation in size and velocity do not significantly change with variations in spraying parameters. Drop size decreases with an increase in atomizing/shaping air pressure, a decrease in liquid supply rate, and a decrease in formulation concentration (viscosity). Drop velocities increase with an increase in atomizing air pressure, a decrease in liquid supply rate, a decrease in formulation concentration, and a decrease in gun-to-target distance.;In contrast to size and velocity distribution, spatial variation in volume flux is sensitive to changes in operating conditions. For elliptical sprays, an increase in shaping air pressure and an increase in liquid viscosity lead to the development of a dumbbell-shaped pattern. Increasing atomizing air pressure narrows the spray whereas increasing liquid supply rate produces a more elliptical spray. On the contrary, volume flux distributions for round sprays are significantly less sensitive to changes in either operating conditions or liquid viscosity.;(2) utilizes a commercially-available CFD package to predict how sprays evolve under drum coater conditions. Results show that drum rotation induces gas swirling that transports small drops away from the spray zone. It also lengthens the spray. Drying air promotes spray evaporation, therefore reducing local drop number density. Furthermore, since drying air enters from the top of the drum, it pushes the spray downward, leading to spray patterns that resemble the letter 'C'. Drying air flow also helps reduce the effects of drum rotation on spray evolution by providing droplets with additional axial momentum. The additional momentum in turn increases droplet velocities.;Computed drop sizes and drop velocities generally agree well with measured data, but ∼46% difference is observed when comparing measured and computed volume flux magnitude. Measured volume flux data, however, are likely less accurate due to the systematic limitations of the standard (Fiber) PDA system.;Results from (1) provide a comprehensive understanding on how changes in atomizer operational parameters influence spray characteristics and patterns, and on how drum coater parameters (drying air flow and drum rotational speed) influence the spray evolution process. Results from (2) provide a means to model spray evolution in the drum coater and to reinforce process understanding, particularly for the influence of drum rotation on drying air flow, and for the influence of process variables on spray pattern.
机译:提出了一种用于喷雾剂和片剂的喷雾建模和测量方法。它由(1)空间分辨的喷雾特征和(2)随后使用CFD进行的喷雾演变的计算预测组成。 (1)和(2)都符合强调过程理解和分析过程设计的PAT准则;(1)利用双模式相位多普勒风速仪(PDA)系统。在覆盖整个喷雾横截面积的多个点获得数据。通过确保PDA测量的质量流量与测量的质量流量匹配并将PDA计算的吸收率与光学图案形成器测量的吸收率进行比较来验证测量结果;实验数据表明,整个喷雾横截面的液滴大小,速度和体积通量在空间上都在变化区域。尺寸和速度的空间变化不会随着喷涂参数的变化而显着变化。液滴尺寸随着雾化/成形气压的增加,液体供应速率的降低以及制剂浓度(粘度)的降低而减小。液滴速度随着雾化气压的增加,液体供应速率的降低,制剂浓度的降低以及喷枪到目标的距离的减小而增加。与体积和速度分布相反,体积通量的空间变化是对操作条件的变化敏感。对于椭圆形喷雾,成形空气压力的增加和液体粘度的增加导致哑铃形图案的发展。雾化空气压力的增加使喷雾变窄,而液体供应速率的增加使喷雾变得更椭圆。相反,圆形喷涂的体积通量分布对操作条件或液体粘度的变化不那么敏感。;(2)利用市售的CFD软件包来预测在滚筒涂布机条件下喷涂如何发展。结果表明,滚筒旋转会引起气体涡流,从而将小液滴从喷雾区域带走。它也延长了喷雾。干燥空气促进喷雾蒸发,因此降低了局部液滴数密度。此外,由于干燥空气是从滚筒顶部进入的,因此它将喷雾向下推动,从而形成类似于字母“ C”的喷雾形式。干燥的空气流还通过为液滴提供额外的轴向动量,从而帮助减少滚筒旋转对喷雾演变的影响。额外的动量反过来又增加了液滴的速度。计算得出的液滴大小和液滴速度通常与实测数据非常吻合,但是在比较实测和计算的体积通量大小时,观察到约46%的差异。但是,由于标准(光纤)PDA系统的系统局限性,测得的体积通量数据的准确性可能较低。;(1)的结果提供了对雾化器工作参数的变化如何影响喷雾特性和模式的全面理解,以及滚筒涂布机的参数(干燥空气流量和滚筒转速)如何影响喷涂过程。 (2)的结果提供了一种在滚筒式涂布机中模拟喷雾演变并加强工艺理解的方法,特别是对于滚筒旋转对干燥气流的影响以及工艺变量对喷雾模式的影响。

著录项

  • 作者

    Muliadi, Ariel Roland.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Chemical.;Engineering Mechanical.;Health Sciences Pharmacy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号