首页> 外文学位 >Exploring scaling limits and computational paradigms for next generation embedded systems.
【24h】

Exploring scaling limits and computational paradigms for next generation embedded systems.

机译:探索下一代嵌入式系统的扩展限制和计算范例。

获取原文
获取原文并翻译 | 示例

摘要

It is widely recognized that device and interconnect fabrics at the nanoscale will be characterized by a higher density of permanent defects and increased susceptibility to transient faults. This appears to be intrinsic to nanoscale regimes and fundamentally limits the eventual benefits of the increased device density, i.e., the overheads associated with achieving fault-tolerance may counter the benefits of increased device density -- density-reliability tradeoff. At the same time, as devices scale down one can expect a higher proportion of area to be associated with interconnection, i.e., area is wire dominated. In this work we theoretically explore density-reliability tradeoffs in wire dominated integrated systems. We derive an area scaling model based on simple assumptions capturing the salient features of hierarchical design for high performance systems, along with first order assumptions on reliability, wire area, and wire length across hierarchical levels. We then evaluate overheads associated with using basic fault-tolerance techniques at different levels of the design hierarchy. This, albeit simplified model, allows us to tackle several interesting theoretical questions: (1) When does it make sense to use smaller less reliable devices? (2) At what scale of the design hierarchy should fault tolerance be applied in high performance integrated systems?;In the second part of this thesis we explore perturbation-based computational models as a promising choice for implementing next generation ubiquitous information technology on unreliable nanotechnologies. We show the inherent robustness of such computational models to high defect densities and performance uncertainty which, when combined with low manufacturing precision requirements, makes them particularly suitable for emerging nanoelectronics. We propose a hybrid eNano-CMOS perturbation-based computing platform relying on a new style of configurability that exploits the computational model's unique form of unstructured redundancy. We consider the practicality and scalability of perturbation-based computational models by developing and assessing initial foundations for engineering such systems. Specifically, new design and decomposition principles exploiting task specific contextual and temporal scales are proposed and shown to substantially reduce complexity for several benchmark tasks. Our results provide strong evidence for the relevance and potential of this class of computational models when targeted at emerging unreliable nanoelectronics.
机译:众所周知,纳米级的器件和互连结构的特征是永久缺陷的密度更高,并且对瞬态故障的敏感性更高。这似乎是纳米尺度机制所固有的,从根本上限制了增加器件密度的最终好处,即与实现容错相关的开销可能抵消了增加器件密度的好处-密度-可靠性的权衡。同时,随着设备的缩小,人们可以期望与互连相关的区域的比例更高,即,区域以电线为主。在这项工作中,我们从理论上探讨了以导线为主的集成系统中的密度-可靠性权衡。我们基于捕获高性能系统分层设计的显着特征的简单假设,以及有关可靠性,导线面积和跨层导线长度的一阶假设,得出一个面积缩放模型。然后,我们评估与在设计层次结构的不同级别上使用基本容错技术相关的开销。尽管简化了模型,但它使我们能够解决几个有趣的理论问题:(1)什么时候使用较小的,可靠性较差的设备? (2)在高性能集成系统中应将容错应用到设计层次的什么规模? 。我们展示了这种计算模型对高缺陷密度和性能不确定性的固有鲁棒性,当结合低制造精度要求时,使其特别适合新兴的纳米电子学。我们提出了一种基于eNano-CMOS扰动的混合计算平台,该平台依赖于一种新型的可配置性,该可配置性利用了计算模型的非结构化冗余的独特形式。我们通过开发和评估设计此类系统的初始基础,来考虑基于扰动的计算模型的实用性和可伸缩性。具体而言,提出并利用了特定于任务的上下文和时间范围的新设计和分解原理,并表明该方法可以显着降低一些基准任务的复杂性。当针对新兴的不可靠的纳米电子学时,我们的结果为此类计算模型的相关性和潜力提供了有力的证据。

著录项

  • 作者

    Zykov, Andrey V.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Computer.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号