首页> 外文学位 >Supersonic biplane design via adjoint method.
【24h】

Supersonic biplane design via adjoint method.

机译:超音速双翼飞机通过伴随法设计。

获取原文
获取原文并翻译 | 示例

摘要

In developing the next generation supersonic transport airplane, two major challenges must be resolved. The fuel efficiency must be significantly improved, and the sonic boom propagating to the ground must be dramatically reduced. Both of these objectives can be achieved by reducing the shockwaves formed in supersonic flight. The Busemann biplane is famous for using favorable shockwave interaction to achieve nearly shock-free supersonic flight at its design Mach number. Its performance at off-design Mach numbers, however, can be very poor.;This dissertation studies the performance of supersonic biplane airfoils at design and off-design conditions. The choked flow and flow-hysteresis phenomena of these biplanes are studied. These effects are due to finite thickness of the airfoils and non-uniqueness of the solution to the Euler equations, creating over an order of magnitude more wave drag than that predicted by supersonic thin airfoil theory. As a result, the off-design performance is the major barrier to the practical use of supersonic biplanes.;The main contribution of this work is to drastically improve the off-design performance of supersonic biplanes by using an adjoint based aerodynamic optimization technique. The Busemann biplane is used as the baseline design, and its shape is altered to achieve optimal wave drags in series of Mach numbers ranging from 1.1 to 1.7, during both acceleration and deceleration conditions. The optimized biplane airfoils dramatically reduces the effects of the choked flow and flow-hysteresis phenomena, while maintaining a certain degree of favorable shockwave interaction effects at the design Mach number. Compared to a diamond shaped single airfoil of the same total thickness, the wave drag of our optimized biplane is lower at almost all Mach numbers, and is significantly lower at the design Mach number. In addition, by performing a Navier-Stokes solution for the optimized airfoil, it is verified that the optimized biplane improves the total drag, including the wave drag and the viscous drag, compared to a single diamond airfoil.
机译:在开发下一代超音速运输飞机时,必须解决两个主要挑战。必须显着提高燃油效率,并且必须大大减少传播到地面的音波。这两个目的都可以通过减少超音速飞行中形成的冲击波来实现。 Busemann双翼飞机以其良好的冲击波相互作用以其设计马赫数实现几乎无冲击的超音速飞行而闻名。然而,其在非设计马赫数下的性能可能非常差。;本论文研究了超音速双翼机翼在设计和非设计条件下的性能。研究了这些双翼飞机的flow流和流滞现象。这些影响是由于翼型的有限厚度和Euler方程解的不唯一性导致的,与超音速薄翼型理论所预测的相比,波浪阻力增加了一个数量级。结果,超设计性能是超音速双翼飞机实际使用的主要障碍。这项工作的主要贡献是通过使用基于伴随的空气动力学优化技术来大大提高超音速双翼飞机的非设计性能。 Busemann双翼飞机被用作基线设计,并且在加速和减速条件下,都对其形状进行了更改,以实现一系列范围从1.1到1.7的马赫数的最佳波浪阻力。优化的双翼飞机机翼可显着减少阻塞的气流和流滞现象的影响,同时在设计马赫数下保持一定程度的有利的冲击波相互作用。与总厚度相同的菱形单翼相比,我们优化的双翼飞机的波浪阻力在几乎所有马赫数下均更低,而在设计马赫数下则明显更低。此外,通过对优化的机翼执行Navier-Stokes解决方案,可以证明与单个金刚石机翼相比,优化的双翼飞机改善了总阻力,包括波浪阻力和粘性阻力。

著录项

  • 作者

    Hu, Rui.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号