首页> 外文学位 >Superporous hydrogels as novel scaffolds for tissue engineering.
【24h】

Superporous hydrogels as novel scaffolds for tissue engineering.

机译:超多孔水凝胶是用于组织工程的新型支架。

获取原文
获取原文并翻译 | 示例

摘要

Formulating scaffolds and the tissue matrix environment remains an unmet need for the field of tissue engineering that preludes successful tissue engineered human organs. Insufficient interconnected macroporosity in scaffolds is one of the limiting factors in cell colonization, new tissue formation and vascularization in 3D tissue engineered grafts. Given these problems, the focus of my research was to develop a poly(ethylene glycol) diacrylate (PEGDA) tissue engineering scaffold that will enable stem cell infiltration, survival and differentiation, and also permit vascularization within the scaffold.;We synthesized PEGDA based superporous hydrogels with highly interconnected macropores architecture that enabled rapid cell uptake within the scaffold with high incorporation efficiencies and uniform distribution, without the use of external force or device for cell seeding. When human mesenchymal stem cells (MSCs) were seeded within the superporous hydrogels scaffolds, the cells anchored within the SPHs in presence of serum proteins, and secreted extra-cellular matrix molecules, such as, fibronectin, laminin, collagen type I and collagen type IV even in the absence of cell adhesive peptides. The highly porous architecture enabled stem cell survival for over 7 weeks in vitro. Within the porous network, the MSCs retained their ability to differentiate to the three primary mesenchyme lineages upon appropriate chemical induction. Differentiation was specific to the induction medium used and no trans-differentiation between groups was observed. The biomimetic environment of the scaffolds thus, supported stem cell survival while retaining 'sternness'.;The highly interconnected, macroporous architecture of the scaffolds provided a 'bioinspired' material for bone tissue engineering by supporting stem cell induced osteogenesis within the scaffolds. The atomic composition of the mineralized matrix was further found to be similar to calcium-deficient hydroxyapatite, the amorphous biological precursor of bone. In addition to supporting stem cell survival and differentiation, the scaffolds also demonstrated potential for in vivo cellular infiltration and vascular ingrowths. The rapid neovasularization and limited fibrotic response observed suggested that, the architecture may be conducive to cell survival and rapid vessel development. Given the shortcomings of current auto and allograft tissue implants, this study provided an alternative polymer scaffold for tissue engineering.
机译:配制支架和组织基质环境仍然是组织工程领域的未满足需求,而该领域需要成功的组织工程化人体器官。支架中相互连接的大孔隙不足,是3D组织工程移植物中细胞定植,新组织形成和血管形成的限制因素之一。鉴于这些问题,我的研究重点是开发一种聚乙二醇二丙烯酸酯(PEGDA)组织工程支架,该支架能够实现干细胞的浸润,存活和分化,并允许支架内的血管形成。具有高度互连的大孔结构的水凝胶,可在支架内快速吸收细胞,并具有较高的结合效率和均匀的分布,而无需使用外力或细胞接种装置。当将人间充质干细胞(MSC)植入超孔水凝胶支架中时,这些细胞在存在血清蛋白的情况下锚定在SPH中,并分泌细胞外基质分子,例如纤连蛋白,层粘连蛋白,I型胶原和IV型胶原。即使没有细胞黏附肽高度多孔的结构使干细胞能够在体外存活超过7周。在多孔网络内,通过适当的化学诱导,MSC保留了分化为三种主要间充质谱系的能力。分化对于所使用的诱导培养基是特异性的,并且未观察到组之间的反分化。因此,支架的仿生环境在保持“严厉”的同时支持了干细胞的存活。高度相互关联的大孔构架通过支持支架内的干细胞诱导的成骨作用,为骨组织工程提供了“生物启发”的材料。还发现矿化基质的原子组成类似于缺钙的羟基磷灰石,后者是骨骼的无定形生物前体。除了支持干细胞的存活和分化,支架还显示了体内细胞浸润和血管向内生长的潜力。快速的新血管形成和有限的纤维化反应表明,该结构可能有助于细胞存活和快速的血管发育。鉴于当前的自体和同种异体组织植入物的缺点,本研究提供了一种用于组织工程的替代聚合物支架。

著录项

  • 作者

    Keskar, Vandana.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Biology Cell.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 276 p.
  • 总页数 276
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号