首页> 外文学位 >Mechanical and chemical properties of high density polyethylene: Effects of microstructure on creep characteristics.
【24h】

Mechanical and chemical properties of high density polyethylene: Effects of microstructure on creep characteristics.

机译:高密度聚乙烯的机械和化学性质:微观结构对蠕变特性的影响。

获取原文
获取原文并翻译 | 示例

摘要

Environmental stress cracking (ESC) can result in catastrophic failure of polyethylene (PE) structures without any visible warning. The use of PE in more demanding applications, such as trenchless piping, can accelerate ESC failure of the material. Besides public safety issues, the replacement and remediation of these failed polyethylene structures also cost both in money and labour. This thesis is part of a collaborative project between the disciplines of chemical and civil engineering to study environmental stress cracking resistance (ESCR) of polyethylene. By combining structural mechanics and (micro)molecular science, new insights into the ESCR behaviour of polyethylene could be achieved.;Most ESCR research has so far focused on bridging-tie-molecules as the main source of inter-lamellar connections. We take a fresh approach and demonstrate in this thesis that physical chain entanglements also contribute to the formation of inter-lamellar linkages. Chain entanglements in the melt state are known to be preserved in the polymer upon solidification, therefore, rheological determination of the molecular weight between entanglements (Me) is used as a measure of chain entanglements for PE. A lower Me value means a higher number of entanglements in the system. The inversely proportional relationship between Me and ESCR indicates that low network mobility due to increasing number of chain entanglements increases ESCR of PE. With the understanding that strain hardening is related to ESCR of polyethylene, the relationship between chain entanglements and tensile strain hardening has also been investigated. By combining experimental observations and parallel micromechanical modeling results, the presence of physical chain entanglements in the amorphous phase was demonstrated to be the factor controlling the strain hardening behaviour of polyethylene.;Studies of the effect of inter-lamellar linkages on ESCR of polyethylene have traditionally focused on changes in the amorphous phase. In this thesis, percentage crystallinity and lamella thickness of polyethylene resins were studied to determine their effects on ESCR. The study of the effect of the crystalline phase on ESCR was extended to investigate the lateral surface characteristics of the lamella. An increase in ESCR was observed with increases in lateral lamella area of resins. It was postulated that a larger lateral lamella area results in a higher probability of formation of inter-lamellar linkages. This increase in phase interconnectivity directly results in an increasing ESCR for the resins.;Finally, in order to facilitate practical applications of polyethylene (especially in pipes), attempts were made to develop a predictive tool for the quantitative estimation of the long-term ESCR of polyethylene based on the short-term notched constant load test (NCLT). Although previous work on slow crack growth models showed little sensitivity to crack activation energy, the ESC model pursued herein was found to be exponentially dependent on this parameter. Further refinement of the ESC model is needed but the modeling investigation proved fruitful in highlighting several other relationships amongst chemical, physical and mechanical properties of PE resins, such as, that between ESC crack activation energy and the alpha-relaxation energy of polyethylene.;The test commonly used for determining ESCR of polyethylene can be time consuming and rather imprecise. In our study a new testing method has been developed which compares ESCR of resins based on the more direct measure of "hardening stiffness" rather than strain-hardening modulus. Our new method is much simpler than those proposed previously because it is conducted under ambient conditions and does not require specialized equipment for true stress-strain measurements. Comparisons between the conventional ESCR test method and the strain hardening test show that strain hardening can be used to rank ESCR of polyethylene in a reliable fashion. The strain hardening test developed in this thesis has the potential to replace the standard ESCR test that has been in use in industry for the past twenty five years.
机译:环境应力开裂(ESC)可能导致聚乙烯(PE)结构发生灾难性破坏,而没有任何可见的警告。在非开挖管道等要求更高的应用中使用PE会加速材料的ESC失效。除了公共安全问题之外,这些失效的聚乙烯结构的更换和修复也花费金钱和劳力。本论文是化学和土木工程学科之间一项合作项目的一部分,目的是研究聚乙烯的抗环境应力开裂性(ESCR)。通过将结构力学和(微)分子科学相结合,可以获得对聚乙烯的ESCR行为的新见解。迄今为止,大多数ESCR研究都集中在桥接分子之间作为层间连接的主要来源。我们采用一种新的方法,并在本文中证明了物理链缠结也有助于层间键合的形成。已知在固化时,熔融态的链缠结会保留在聚合物中,因此,流变学测定缠结之间的分子量(Me)可用作PE链缠结的量度。 Me值越低,意味着系统中的纠缠数越多。 Me和ESCR之间的反比关系表明,由于链缠结数量增加而导致的低网络移动性会增加PE的ESCR。在了解应变硬化与聚乙烯的ESCR有关的前提下,还研究了链缠结与拉伸应变硬化之间的关系。通过结合实验观察和平行微机械建模结果,证明非晶态中物理链缠结的存在是控制聚乙烯应变硬化行为的因素。;传统上,研究层间键合对聚乙烯ESCR的影响的研究专注于非晶相的变化。本文研究了聚乙烯树脂的结晶度百分比和薄片厚度,以确定它们对ESCR的影响。扩展了结晶相对ESCR的影响的研究,以研究薄片的侧面特征。观察到ESCR随树脂横向薄片面积的增加而增加。据推测,较大的横向薄片面积导致较高的形成薄片间键的可能性。相互连性的增加直接导致树脂的ESCR增加。最后,为了促进聚乙烯的实际应用(尤其是在管道中),人们尝试开发一种预测工具,用于定量评估长期ESCR基于短期缺口恒负荷测试(NCLT)的聚乙烯。尽管先前关于慢速裂纹扩展模型的研究表明对裂纹活化能几乎没有敏感性,但发现本文采用的ESC模型与该​​参数呈指数关系。需要进一步完善ESC模型,但模型研究证明可以有效地突出PE树脂的化学,物理和机械性能之间的其他一些关系,例如ESC裂纹活化能和聚乙烯的α松弛能之间的关系。通常用于确定聚乙烯ESCR的测试是耗时的,而且不够精确。在我们的研究中,已经开发了一种新的测试方法,该方法基于“硬化刚度”而不是应变硬化模量的更直接方法来比较树脂的ESCR。我们的新方法比以前提出的方法简单得多,因为它是在环境条件下进行的,并且不需要专门的设备来进行真实的应力-应变测量。常规ESCR测试方法与应变硬化测试之间的比较表明,应变硬化可用于以可靠的方式对聚乙烯的ESCR进行分级。本文开发的应变硬化测试有可能取代过去二十五年中已在工业中使用的标准ESCR测试。

著录项

  • 作者

    Cheng, Joy J.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 302 p.
  • 总页数 302
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号