首页> 外文学位 >Development and use of microelectrodes to evaluate nitrification within chloraminated drinking water system biofilms, and the effects of phosphate as a corrosion inhibitor on nitrifying biofilm.
【24h】

Development and use of microelectrodes to evaluate nitrification within chloraminated drinking water system biofilms, and the effects of phosphate as a corrosion inhibitor on nitrifying biofilm.

机译:开发和使用微电极评估氯化饮用水系统生物膜中的硝化作用,以及磷酸盐作为腐蚀抑制剂对生物膜硝化的影响。

获取原文
获取原文并翻译 | 示例

摘要

The implementation of increasingly stringent regulations for trihalomethanes (THM) and haloacetic acids (HAA) in the United States has resulted in an increasing use of chloramine within the past two decades as a secondary disinfectant in the drinking water treatment industry. Along with the addition of chloramines comes the risk of nitrification in the distribution system due to the ammonia which is released during chloramine decay. Nitrification in drinking water distribution systems may result in degradation of water quality and subsequent non-compliance with existing regulations.Meanwhile, orthophosphate (PO43-) plays an important role in corrosion control by combining with lead and copper in plumbing materials it is recommended to maintain a phosphate residual of at least 0.5 mg P/L and, if possible, a residual of 1 mg P/L is preferable. However, relatively little is known about the effect of phosphate on nitrifying biofilm in chloraminated drinking water distribution systems when it comes to addition of phosphate to the water distribution system.The primary objective of this research was to develop, fabricate and evaluate microelectrodes to evaluate nitrification within chloraminated drinking water system biofilm, and to determine the effects of phosphate on nitrifying bacteria biofilm. Chlorine microelectrodes for measuring monochloramine and phosphate microelectrodes for detecting phosphate ions in the biological sample (i.e. biofilms, aggregates) were developed, characterized and applied for in-situ environmental analyses. Both microelectrodes showed excellent selectivity toward target constituents and were successfully applied.Monochloramine penetrated fully into nitrifying biofilms within 24 hours when fed at a 4:1 Cl2:N ratio, showing a cessation of aerobic activity via DO penetration following application of monochloramine. However, monochloramine penetration did not necessarily equate to a loss in viability, and the presence of excess ammonia in the water system prevented microbial inactivation. Biofilm recovery occurred when disinfection stopped. Monochloramine showed greater penetration compared to chlorine. Monochloramine penetrated into the biofilm surface layer 49 times faster than chlorine within the nitrifying biofilm and 39 times faster in the multi-species biofilm than did chlorine. Phosphate was found to act positively on biofilm development and nitrification in the long term. Phosphate microprofiles showed that phosphate contents in the biofilm was independent on the nitrifying activity. Low availability of phosphorus seemed to change biofilm structure at the biofilm surface. Phosphate did not affect the monochloramine penetration and monochloramine fully penetrated into the nitrifying biofilm within 24 hours both with and without phosphate.The results of this research provide an improved insight into the relationship between phosphate as a corrosion inhibitor and nitrifying biofilm in chloraminated drinking water distribution systems, a better understanding of the impact of disinfectant (i.e. chlorine, monochloramine) penetration into biofilms on microbial activity changes (i.e. DO, ammonia, nitrate, and pH microprofiles), and understanding of the correlated viability achieved upon administration of chlorine or monochloramine disinfectant this will allow development of better prevention and control strategies for nitrification episodes in the presence of phosphate, including for biofilm control.
机译:在美国,对三卤甲烷(THM)和卤代乙酸(HAA)的法规越来越严格,在过去的20年中,氯胺在饮用水处理行业中作为次要消毒剂的使用量有所增加。随着氯胺的分解过程中释放出的氨,随着氯胺的添加,分配系统中存在硝化的风险。饮用水分配系统中的硝化作用可能会导致水质下降并随后不符合现行法规。同时,正磷酸盐(PO43-)通过与水暖材料中的铅和铜结合在腐蚀控制中发挥重要作用,建议对其进行维护磷酸盐残留量至少为0.5 mg P / L,如果可能,残留量优选为1 mg P / L。然而,关于将磷酸盐添加到水分配系统中,磷酸盐对氯化饮用水分配系统中硝化生物膜的影响知之甚少。本研究的主要目的是开发,制造和评估微电极以评估硝化作用内含氯的饮用水系统生物膜,并确定磷酸盐对硝化细菌生物膜的影响。已开发,表征了用于测量生物样品中氯离子的氯微电极和用于检测生物样品中磷酸根离子的磷酸盐微电极(即生物膜,聚集体),并将其用于原位环境分析。两种微电极均对目标成分具有优异的选择性,并已成功应用。一氯胺以4:1的Cl2:N比例进料时,一氧化氯胺在24小时内完全渗入硝化生物膜中,一氧化氯在施用一氯胺后停止了有氧活性。但是,单氯胺的渗透并不一定等于生存能力的下降,而且水系统中过量氨的存在阻止了微生物的失活。消毒停止后,发生了生物膜恢复。与氯相比,一氯胺的渗透性更高。一氯胺渗入生物膜表面层的速度是硝化生物膜中氯的49倍,多物种生物膜中氯的渗透速度是氯的39倍。从长远来看,发现磷酸盐对生物膜的发育和硝化起积极作用。磷酸盐的微观特征表明,生物膜中的磷酸盐含量与硝化活性无关。磷的低利用率似乎改变了生物膜表面的生物膜结构。无论有无磷酸盐,磷酸盐在24小时内都不会影响一氯胺的渗透和一氯胺完全渗透到硝化生物膜中。这项研究的结果为了解磷酸盐作为一种腐蚀抑制剂与氯化生物饮用水中硝化生物膜之间的关系提供了更好的认识。系统,更好地了解消毒剂(例如,氯,一氯胺)渗透到生物膜中对微生物活性变化的影响(例如,溶解氧,氨,硝酸盐和pH值微图),并了解施用氯或一氯胺消毒剂后获得的相关生存力这将有助于针对磷酸盐存在下的硝化事件开发更好的预防和控制策略,包括生物膜控制。

著录项

  • 作者

    Lee, Woo Hyoung.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Chemistry Analytical.Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号