首页> 外文学位 >Molecular mechanisms of the axonal and dendritic development of the retinal ganglion cells.
【24h】

Molecular mechanisms of the axonal and dendritic development of the retinal ganglion cells.

机译:视网膜神经节细胞轴突和树突发展的分子机制。

获取原文
获取原文并翻译 | 示例

摘要

Understanding how the tremendous diversity of neuronal morphology and connectivity patterns is achieved and what are the cellular and molecular mechanisms underlying these fundamental processes are the intriguing problems in modern biology. Thanks to recent methodological advances in microarray technology, laser-based microdissection, and neuronal imaging techniques, it is now possible to analyze neuronal morphology in great detail and to study the molecular mechanisms involved in the regulation of neuronal morphogenesis. The identification of molecules that control dendritic and axonal formation, maturation and refinement has become the subject of much focus in the field of neuronal development. In this study, we sought to identify molecules regulating eye specific retinogeniculate segregation---the classical models for axonal developmental plasticity (chapter 1)---and investigated the role of canonical axon guidance molecules Plexin-A3 and Plexin-A4 in dendritic and axonal development of the retinal ganglion cells (chapter 2).;In chapter 1, we employed microarray technology to identify molecules differentially expressed between the ipsi and contra projecting retinal ganglion cells during retinogeniculate segregation. We found that vesicular glutamate transporter two (VGluT2) is specifically present only in contralateral retinogeniculate synapses during segregation, and this differential expression of VGluT2 is lost soon after the segregation is complete. This remarkably precise temporal regulation of its expression suggests that VGluT2 has an important rote during eye-specific axon refinement. We speculate that VGluT2 can provide molecular cues for ipsi and contra synapse discrimination. In our microarray experiment, along with VGluT2, we have identified several novel and previously known gene expression gradients across the postnatal retina and discussed their hypothetical roles in retinal development.;In chapter 2, we studied the loss-of-function effects of the two axon guidance molecules, Plexin-A3 and Plexin-A4, on the dendritic and axonal development of the retinal ganglion cells. Neither of the two Plexins was found to be important for the guidance of the retinal ganglion axons or for the retinogeniculate segregation. We also analyzed the dendritic morphology of the retinal ganglion cells in the Plexin-A3/A4 double knockout animals and found that it was not significantly altered comparing to the wild type. The simultaneous loss of both Plexin-A3 and A4, however, affected the diameter of the retinal ganglion axons, suggesting that Plexin-A3 and A4 might well be involved in basic processes of axonogenesis.;In this work was a small step towards the understanding of general mechanisms of axonal and dendritic development and the mechanisms of retinogeniculate segregation in particular. Our findings about the expression of VGluT2 in the retinal axon terminals will stimulate further investigation of the differential organization of the ipsi- and contralateral retinogeniculate synapses and how this differential organization contributes to the process of eye-specific segregation. Our conclusion that Plexin-A3 and A4 are not largely required for the normal dendritic morphogenesis of the retinal ganglion cells will eventually help to figure out the actual functions of these two Plexins in the retinal development.
机译:了解如何实现神经元形态和连通性模式的巨大多样性以及这些基本过程的细胞和分子机制是什么,这是现代生物学中引人入胜的问题。得益于微阵列技术,基于激光的显微解剖和神经元成像技术的最新方法学进展,现在可以更详细地分析神经元形态,并研究参与调节神经元形态发生的分子机制。控制树突和轴突形成,成熟和完善的分子的鉴定已成为神经元发展领域中的许多焦点。在这项研究中,我们试图确定调节眼特异性视网膜原性分离的分子-轴突发育可塑性的经典模型(第1章)-并研究了典型的轴突引导分子Plexin-A3和Plexin-A4在树突状和视网膜神经节细胞的轴突发育(第2章)。在第1章中,我们采用微阵列技术来鉴定在视网膜原细胞分离过程中ipsi和反向投射的视网膜神经节细胞之间差异表达的分子。我们发现,水泡谷氨酸转运蛋白二(VGluT2)仅在分离过程中仅在对侧维甲酸突触中存在,并且在分离完成后不久,VGluT2的这种差异表达就消失了。其表达的这种非常精确的时间调控表明,VGluT2在眼特异性轴突细化过程中具有重要的死记硬背。我们推测VGluT2可以为ipsi和对突触的辨别提供分子提示。在我们的微阵列实验中,我们与VGluT2一起,鉴定出了整个产后视网膜的几种新颖且先前已知的基因表达梯度,并讨论了它们在视网膜发育中的假设作用。轴突指导分子,Plexin-A3和Plexin-A4,在视网膜神经节细胞的树突和轴突发育中。两种Plexins均未发现对指导视网膜神经节轴突或视黄醛分离非常重要。我们还分析了Plexin-A3 / A4双敲除动物中视网膜神经节细胞的树突形态,发现与野生型相比,其没有明显改变。然而,Plexin-A3和A4的同时丢失影响了视网膜神经节轴突的直径,表明Plexin-A3和A4可能很好地参与了轴突形成的基本过程。轴突和树突发展的一般机制,尤其是视网膜生成分离的机制。我们有关视网膜轴突末端VGluT2表达的发现将刺激对同侧和对侧视黄醛酸突触的差异组织以及该差异组织如何促进眼特异性分离的过程进行进一步研究。我们的结论认为,视网膜神经节细胞正常树突形态发生并不需要大量的Plexin-A3和A4,这最终将有助于弄清这两种Plexins在视网膜发育中的实际功能。

著录项

  • 作者

    Goloshchapov, Andrey.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Biology Molecular.;Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号