首页> 外文学位 >Multi-Scale Modeling of Biomass Pyrolysis - Macro and Meso - Scale Modeling
【24h】

Multi-Scale Modeling of Biomass Pyrolysis - Macro and Meso - Scale Modeling

机译:生物质热解的多尺度建模-宏观和中观尺度建模

获取原文
获取原文并翻译 | 示例

摘要

Biomass pyrolysis is the thermal decomposition of lignocellulosic matter in an inert environment and is considered to be one of several alternative renewable and sustainable sources of chemicals and fuel precursors for the replacement fossil carbon.;Kinetic parameters for biomass pyrolysis were estimated using a newly proposed mathematical analysis for the reduction of thermogravimetric data. Several factors that affect kinetic parameters and their interrelationships were considered. The key contribution of this kinetic study was to identify the importance of the optimization strategy, noting that numerous seemingly feasible false optima are possible. The findings are applicable in all scientific and engineering fields that require estimation of parameters from Arrhenius-related kinetics; field such as biology, semiconductor, biotechnology, physics, etc.;Modeling biomass pyrolysis is very complex because it is a multi-component, multi-scale and highly heterogeneous process. Prevalent models, based on continuum platforms that depend upon direct solution of differential equations have not been able to satisfactorily capture the heterogeneity aspects of biomass pyrolysis. In this work, a novel multi-scale kinetic cellular automata-based computational platform was used to model biomass pyrolysis with the purpose of extending the capability of known pyrolysis models by capturing microstructural changes that take place during biomass pyrolysis at mesoscopic length scales. For the first time, a technique that uses actual biomass images acquired from transmission electron microscopy (TEM) and X-ray micro-computed tomography (microCT) was demonstrated. A shrinkage mechanism was proposed from experimental observations and testing of hypothesis using computational alternatives. Finally, pyrolysis-induced structural changes (including shrinkage and porosity) of biomass of arbitrary geometry was modeled, thus making it possible to predict thermo-kinetic properties that are dependent on porosity and shrinkage as a function of time and reaction temperature.;Both the kinetic parameter estimation strategy and mesoscopic microstructural model should advance the effort to expand the emergent biofuels industry and associated technology for direct thermochemical conversion of biomass to liquid fuels (BTL) and chemicals.
机译:生物质热解是木质纤维素物质在惰性环境中的热分解,被认为是替代化石碳的化学物质和燃料前体的几种替代性可再生和可持续来源之一。生物质热解的动力学参数是使用新提出的数学方法估算的分析以减少热重数据。考虑了影响动力学参数及其相互关系的几个因素。该动力学研究的关键作用是确定优化策略的重要性,并指出可能存在许多看似可行的错误最优。该发现适用于所有需要根据阿伦尼乌斯相关动力学估算参数的科学和工程领域。生物质热解的建模非常复杂,因为它是一个多成分,多规模且高度异质的过程。基于依赖于微分方程的直接解的连续统平台的流行模型还不能令人满意地捕获生物质热解的非均质性方面。在这项工作中,一种新颖的基于多尺度动力学细胞自动机的计算平台被用来模拟生物质热解,目的是通过捕获在介观长度尺度上的生物质热解过程中发生的微观结构变化来扩展已知热解模型的能力。首次展示了一种使用从透射电子显微镜(TEM)和X射线微计算机断层扫描(microCT)获得的实际生物质图像的技术。通过实验观察和使用计算替代方法对假设的检验,提出了一种收缩机制。最后,对由热解引起的任意几何形状的生物质的结构变化(包括收缩和孔隙率)进行了建模,从而可以预测取决于时间和反应温度的孔隙率和收缩率的热动力学性质。动力学参数估计策略和介观微观结构模型应推动努力扩展新兴的生物燃料产业以及将生物质直接热化学转化为液体燃料(BTL)和化学品的相关技术。

著录项

  • 作者

    Adenson, Michael O.;

  • 作者单位

    Tennessee Technological University.;

  • 授予单位 Tennessee Technological University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地下建筑;
  • 关键词

  • 入库时间 2022-08-17 11:54:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号