首页> 外文学位 >Microbial Communities Involved in Carbon Monoxide and Syngas Conversion to Biofuels and Chemicals
【24h】

Microbial Communities Involved in Carbon Monoxide and Syngas Conversion to Biofuels and Chemicals

机译:涉及一氧化碳和合成气转化为生物燃料和化学物质的微生物群落

获取原文
获取原文并翻译 | 示例

摘要

On average, our society generates ~0.5 ton of municipal solid waste per person annually. Biomass waste can be gasified to generate synthesis gas (syngas), a gas mixture consisting predominantly of CO, CO 2, and H2. Syngas, rich in carbon and electrons, can fuel the metabolism of carboxidotrophs, anaerobic microorganisms that metabolize CO (a toxic pollutant) and produce biofuels (H2, ethanol) and commodity chemicals (acetate and other fatty acids). Despite the attempts for commercialization of syngas fermentation by several companies, the metabolic processes involved in CO and syngas metabolism are not well understood. This dissertation aims to contribute to the understanding of CO and syngas fermentation by uncovering key microorganisms and understanding their metabolism. For this, microbiology and molecular biology techniques were combined with analytical chemistry analyses and deep sequencing techniques. First, environments where CO is commonly detected, including the seafloor, volcanic sand, and sewage sludge, were explored to identify potential carboxidotrophs. Since carboxidotrophs from sludge consumed CO 1000 faster than those in nature, mesophilic sludge was used as inoculum to enrich for CO- and syngas- metabolizing microbes. Two carboxidotrophs were isolated from this culture: an acetate/ethanol-producer 99% phylogenetically similar to Acetobacterium wieringae and a novel H2-producer, Pleomorphomonas carboxidotrophicus sp. nov. Comparison of CO and syngas fermentation by the CO-enriched culture and the isolates suggested mixed-culture syngas fermentation as a better alternative to ferment CO-rich gases. Advantages of mixed cultures included complete consumption of H 2 and CO2 (along with CO), flexibility under different syngas compositions, functional redundancy (for acetate production) and high ethanol production after providing a continuous supply of electrons. Lastly, dilute ethanol solutions, typical of syngas fermentation processes, were upgraded to medium-chain fatty acids (MCFA), biofuel precursors, through the continuous addition of CO. In these bioreactors, methanogens were inhibited and Peptostreptococcaceae and Lachnospiraceae spp. most likely partnered with carboxidotrophs for MCFA production. These results reveal novel microorganisms capable of effectively consuming an atmospheric pollutant, shed light on the interplay between syngas components, microbial communities, and metabolites produced, and support mixed-culture syngas fermentation for the production of a wide variety of biofuels and commodity chemicals.
机译:平均而言,我们的社会每年每人产生约0.5吨的城市固体废物。可以将生物质废物气化以生成合成气(syngas),合成气主要由CO,CO 2和H2组成。富含碳和电子的合成气可为羧化营养菌,厌氧微生物的代谢提供燃料,这些微生物代谢CO(一种有毒污染物)并产生生物燃料(H2,乙醇)和商品化学品(乙酸盐和其他脂肪酸)。尽管有多家公司尝试进行合成气发酵的商业化尝试,但对于CO和合成气代谢所涉及的代谢过程仍知之甚少。本文旨在通过发现关键微生物并了解其代谢,为理解CO和合成气发酵做出贡献。为此,将微生物学和分子生物学技术与分析化学分析和深度测序技术相结合。首先,探索了通常检测到CO的环境,包括海底,火山砂和污水污泥,以识别潜在的羧化营养菌。由于污泥中的羧化营养菌比自然环境中消耗的CO 1000要快,因此嗜温污泥被用作接种物,以富集CO和合成气代谢微生物。从该培养物中分离出两个羧化营养菌:99%在系统发育上类似于维氏醋杆菌的乙酸盐/乙醇生产菌,以及一个新型的H2产生菌,羧化单胞菌(Pleomorphomonas carboxidotrophicus sp。)。十一月通过富CO培养物和分离株对CO和合成气发酵的比较表明混合培养合成气发酵是发酵富CO气体的更好替代方法。混合培养的优势包括:H 2和CO 2的全部消耗(以及CO),不同合成气组成下的柔韧性,功能冗余(用于乙酸盐生产)和在连续提供电子后乙醇产量高。最后,通过连续添加一氧化碳,将合成气发酵过程中常用的稀乙醇溶液升级为中链脂肪酸(MCFA),作为生物燃料的前体。在这些生物反应器中,产甲烷菌被抑制,Peptostreptococcaceae和Lachnospiraceae spp被抑制。最有可能与羧化营养菌合作生产MCFA。这些结果揭示了能够有效消耗大气污染物的新型微生物,阐明了合成气成分,微生物群落和产生的代谢产物之间的相互作用,并支持混合培养合成气发酵以生产多种生物燃料和商品化学品。

著录项

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Environmental engineering.;Microbiology.;Bioengineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号