首页> 外文学位 >Developing Structure-Property Relationships in Branched Wormlike Micelles via Advanced Rheological and Neutron Scattering Techniques
【24h】

Developing Structure-Property Relationships in Branched Wormlike Micelles via Advanced Rheological and Neutron Scattering Techniques

机译:通过先进的流变和中子散射技术发展分支蠕虫状胶束的结构-性能关系。

获取原文
获取原文并翻译 | 示例

摘要

Surfactant wormlike micelles (WLMs) are of particular scientific interest due to their ability to branch, break, and reform under shear, which can lead to shear banding flow instabilities. The tunable self-assembly of WLMs makes them ubiquitous in applications ranging from consumer products to energy recovery fluids. Altering the topology of WLMs by inducing branching provides a microstructural pathway to design and optimize the flow properties for such targeted applications.;The goal of this thesis is to understand the role of micellar branching on the resulting equilibrium and non-equilibrium properties, while advancing instrumentation and analysis methods in rheology and neutron scattering. The degree of branching in the mixed cationic/anionic surfactant solutions is controlled by the addition of sodium tosylate. The equilibrium properties are characterized via small angle neutron scattering (SANS), linear viscoelastic rheology, neutron spin echo, and dynamic light scattering. Combining rheology with spatiotemporally-resolved SANS enables unambiguous identification of non-equilibrium rheological and scattering signatures of branching and shear banding. The nonlinear WLM response is characterized via flow-SANS under steady shear, shear startup, and large amplitude oscillatory shear. New methods of time-resolved data analysis are developed, which improve experimental resolution by several-fold. Shear-induced orientation is a complex function of branching level, radial position, and deformation type. The structural mechanisms behind shear band formation are elucidated for steady and dynamic flows, which depend on branching level. Shear banding disappears at high branching levels for all deformation types. These responses are used to validate constitutive modeling predictions of dynamic shear banding for the first time. Finally, quantitative metrics to predict shear banding from rheology or flow-induced orientation are developed.;Together, advanced rheological and neutron techniques provide a platform for creating structure-property relationships that predict flow and structural phenomena in WLMs and other soft materials. These methods have enabled characteristic differences in linear versus branched WLMs to be determined. This research is part of a broader effort to characterize branching in polymers and self-assembled systems, and may aid in the formulation of WLMs for specific applications. Finally, this work provides a basis for testing and developing microstructure-based constitutive equations that incorporate micellar breakage and branching.
机译:表面活性剂蠕虫状胶束(WLM)具有特别的科学意义,因为它们在剪切作用下具有分支,断裂和重整的能力,这可能导致剪切带流动不稳定。 WLM的可调自组装使其在从消费产品到能量回收液的各种应用中无处不在。通过诱导分支改变WLM的拓扑结构为设计和优化此类目标应用的流动特性提供了微结构途径。本论文的目的是了解胶束分支在促进平衡和非平衡性质方面的作用,同时推进流变学和中子散射的仪器和分析方法。阳离子/阴离子表面活性剂混合溶液中的支化度通过添加甲苯磺酸钠来控制。通过小角度中子散射(SANS),线性粘弹性流变学,中子自旋回波和动态光散射来表征平衡特性。将流变学与时空解析的SANS结合使用,可以明确识别分支和剪切带的非平衡流变学和散射特征。非线性WLM响应通过在稳定剪切,剪切启动和大振幅振荡剪切下的流-SANS来表征。开发了时间分辨数据分析的新方法,这些方法将实验分辨率提高了几倍。剪切引起的取向是分支水平,径向位置和变形类型的复杂函数。阐明了稳定带和动态流的剪切带形成背后的结构机理,这取决于分支水平。对于所有变形类型,剪切带在高分支水平处消失。这些响应首次用于验证动态剪切带的本构模型预测。最后,开发了用于从流变学或流致取向预测剪切带的定量指标。一起,先进的流变学和中子技术共同提供了一个平台,用于创建可预测WLM和其他软材料中的流动和结构现象的结构-特性关系。这些方法可以确定线性WLM和分支WLM的特性差异。这项研究是表征聚合物和自组装系统支化的更广泛努力的一部分,并且可能有助于为特定应用配制WLM。最后,这项工作为测试和开发结合了胶束破坏和分支的基于微观结构的本构方程提供了基础。

著录项

  • 作者

    Calabrese, Michelle A.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemical engineering.;Materials science.;Physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 683 p.
  • 总页数 683
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号