首页> 外文学位 >Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows
【24h】

Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows

机译:颗粒和固液流中结构形成的分析和建模

获取原文
获取原文并翻译 | 示例

摘要

Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail.;In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the first time. Next, kinetic theory was used to predict the cooling of a gas of such particles. DEM was then used to validate this approach. A study on the rheology of dry cohesive granules with and without friction was then carried out, where the physics of different flow phenomenology was exhaustively explored. Lastly, homogeneous cement slurry simulations were carried out, and compared with vane-rheometer experiments. Qualitative agreement between simulation and experiment were observed.;Lastly, the physics of clustering in homogeneous gas-solid flows is explored in the hopes of gaining a mechanistic explanation of how particle-fluid interactions lead to clustering. Exact equations are derived, detailing the evolution of the two particle density, which may be closed using high-fidelity particle-resolved direct numerical simulation. Two canonical gas-solid flows are then addressed, the homogeneously cooling gas-solid flow (HCGSF) and sedimenting gas-solid flow (SGSF). A mechanism responsible for clustering in the HCGSF is identified. Clustering of plane-wave like structures is observed in the SGSF, and the exact terms are quantified. A method for modeling the dynamics of clustering in these systems is proposed, which may aid in the prediction of clustering and other correlation length-scales useful for less expensive computations.
机译:在许多工业过程中会遇到颗粒状和多相流,特别是在水泥泵送,气动输送,流化催化裂化,CO2捕集和生物材料的快速热解中的特殊应用中,本手稿特别强调了这种情况。这些过程通常使用可使用计算流体动力学进行模拟的平均方程式进行建模。然后需要闭合模型,该模型描述了两种颗粒间相互作用产生的平均力,例如。剪切应力和相间相互作用,例如平均阻力。这种方法最大的障碍之一是在颗粒相中出现了非平凡的时空结构,这可以显着改变这些力的定性行为和由此产生的流动现象。例如,内聚颗粒流中大团簇的形成导致了从固体状流变到液体状流变。在气固系统中发现了另一个示例,在该系统中,观察到小规模的聚集明显降低了所观察到的阻力。而且,仍然存在可能在所有规模上发生结构形成的可能性,导致缺乏传统平均方法所需的规模分离。在这种情况下,要解决几个建模问题:1)基于第一性原理的水泥浆流变建模; 2)建模经历分散的多分散颗粒经历的平均固-固阻力; 3)建模在均相气固两相流中的聚类。对第一和​​第三部分进行了更详细的描述。在水泥流变学的研究中,引入了一些子问题,这些子问题系统地增加了颗粒间相互作用的数量和复杂性。这些粒子间的相互作用包括非弹性,摩擦,内聚和流体相互作用。在第一个研究中,首次充分表征了粘性非弹性颗粒之间的相互作用。接下来,动力学理论被用来预测这种颗粒气体的冷却。然后使用DEM验证此方法。然后,进行了具有和不具有摩擦力的干燥内聚颗粒的流变学研究,其中详尽地探讨了不同流动现象的物理学。最后,进行了均质水泥浆模拟,并与叶片流变仪实验进行了比较。观察到了模拟与实验之间的定性一致性。最后,探讨了均相气固两相流中的聚类物理现象,以期获得对颗粒-流体相互作用如何导致聚类的机械解释。导出了精确的方程式,详细说明了两个粒子密度的变化,可以使用高保真粒子分解直接数值模拟将其封闭。然后讨论了两种规范的气固流,即均匀冷却气固流(HCGSF)和沉降气固流(SGSF)。确定了HCGSF中负责聚类的机制。在SGSF中观察到了平面波状结构的聚类,并对精确项进行了量化。提出了一种对这些系统中的聚类动力学进行建模的方法,该方法可有助于预测聚类和其他相关长度尺度,这些尺度对于较便宜的计算很有用。

著录项

  • 作者

    Murphy, Eric.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Mechanical engineering.;Chemical engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 409 p.
  • 总页数 409
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号