首页> 外文学位 >AI Neuroscience: Visualizing and Understanding Deep Neural Networks
【24h】

AI Neuroscience: Visualizing and Understanding Deep Neural Networks

机译:人工智能神经科学:可视化和理解深度神经网络

获取原文
获取原文并翻译 | 示例

摘要

Deep Learning, a type of Artificial Intelligence, is transforming many industries including transportation, health care and mobile computing. The main actors behind deep learning are deep neural networks (DNNs). These artificial brains have demonstrated impressive performance on many challenging tasks such as synthesizing and recognizing speech, driving cars, and even detecting cancer from medical scans. Given their excellent performance and widespread applications in everyday life, it is important to understand: (1) how DNNs function internally; (2) why they perform so well; and (3) when they fail. Answering these questions would allow end-users (e.g. medical doctors harnessing deep learning to assist them in diagnosis) to gain deeper insights into how these models behave, and therefore more confidence in utilizing the technology in important real-world applications.;Artificial neural networks traditionally had been treated as black boxes---little was known about how they arrive at a decision when an input is present. Similarly, in neuroscience, understanding how biological brains work has also been a long-standing quest. Neuroscientists have discovered neurons in human brains that selectively fire in response to specific, abstract concepts such as Halle Berry or Bill Clinton, informing the discussion of whether learned neural codes are local or distributed. These neurons were identified by finding the preferred stimuli (here, images) that highly excite a specific neuron, which was accomplished by showing subjects many different images while recording a target neuron's activation.;Inspired by such neuroscience techniques, my Ph.D. study produced a series of visualization methods that synthesize the preferred stimuli for each neuron in DNNs to shed more light into (1) the weaknesses of DNNs, which raise serious concerns about their widespread deployment in critical sectors of our economy and society; and (2) how DNNs function internally. Some of the notable findings are summarized as follows. First, DNNs are easily fooled in that it is possible to produce images that are visually unrecognizable to humans, but that state-of-the-art DNNs classify as familiar objects with near certainty confidence (i.e. labeling white-noise images as "school bus"). These images can be optimized to fool the DNN regardless of whether we treat the network as a white- or black-box (i.e. we have access to the network parameters or not). These results shed more light into the inner workings of DNNs and also question the security and reliability of deep learning applications. Second, our visualization methods reveal that DNNs can automatically learn a hierarchy of increasingly abstract features from the input space that are useful to solve a given task. In addition, we also found that neurons in DNNs are often multifaceted in that a single neuron fires for a variety of different input patterns (i.e. it is invariant to changes in the input). These observations align with the common wisdom previously established for both human visual cortex and DNNs. Lastly, many machine learning hobbyists and scientists have successfully applied our methods to visualize their own DNNs or even generate high-quality art images. We also turn the visualization frameworks into (1) an art generator algorithm, and (2) a state-of-the-art image generative model, making contributions to the fields of evolutionary computation and generative modeling, respectively.
机译:深度学习是一种人工智能,正在改变许多行业,包括交通运输,医疗保健和移动计算。深度学习背后的主要参与者是深度神经网络(DNN)。这些人造大脑在许多具有挑战性的任务上表现出了令人印象深刻的性能,例如合成和识别语音,驾驶汽车,甚至从医学扫描中发现癌症。鉴于其出色的性能和在日常生活中的广泛应用,重要的是要了解:(1)DNN如何在内部起作用; (2)为什么表现如此出色; (3)当他们失败时。回答这些问题将使最终用户(例如,利用深度学习来帮助他们进行诊断的医生)对这些模型的行为方式有更深入的了解,从而对在重要的实际应用中利用该技术更有信心。传统上将其视为黑匣子-当它们存在输入时,很少有人知道它们是如何做出决定的。同样,在神经科学领域,了解生物大脑如何工作也是一个长期的追求。神经科学家已经发现了人类大脑中的神经元,这些神经元可以响应特定的抽象概念(例如Halle Berry或Bill Clinton)而选择性激发,从而使有关所学习的神经代码是本地的还是分布的讨论成为了讨论。通过找到高度激发特定神经元的首选刺激(此处为图像)来识别这些神经元,这是通过在记录目标神经元激活的同时向受试者显示许多不同的图像来实现的;受到这种神经科学技术的启发,我的博士学位。研究产生了一系列可视化方法,这些方法综合了DNN中每个神经元的首选刺激,以使更多的信息得以揭示(1)DNN的弱点,这引起了人们对其在我们经济和社会关键领域的广泛部署的严重关注; (2)DNN在内部如何运作。以下是一些值得注意的发现。首先,DNN很容易被愚弄,因为它可以产生人类视觉上无法识别的图像,但是最先进的DNN几乎可以肯定地将其分类为熟悉的对象(即,将白噪声图像标记为“校车” ”)。无论我们将网络视为白盒还是黑盒(即是否可以访问网络参数),都可以优化这些图像以欺骗DNN。这些结果为DNN的内部工作提供了更多亮点,也对深度学习应用程序的安全性和可靠性提出了质疑。其次,我们的可视化方法表明DNN可以自动从输入空间中学习越来越抽象的特征的层次结构,这些特征对于解决给定任务很有用。此外,我们还发现DNN中的神经元通常是多方面的,因为单个神经元会针对各种不同的输入模式进行触发(即输入变化不会改变)。这些观察结果符合先前为人类视觉皮层和DNN所建立的常识。最后,许多机器学习爱好者和科学家已经成功地将我们的方法应用于他们自己的DNN的可视化,甚至生成高质量的艺术图像。我们还将可视化框架转换为(1)艺术生成器算法和(2)最新的图像生成模型,分别为演化计算和生成建模领域做出了贡献。

著录项

  • 作者

    Nguyen, Anh M.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Computer science.;Artificial intelligence.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号