首页> 外文学位 >Fabrication and Assembly of One-Dimensional Semiconductor Nanostructures and Their Application to Multi-Functional Devices
【24h】

Fabrication and Assembly of One-Dimensional Semiconductor Nanostructures and Their Application to Multi-Functional Devices

机译:一维半导体纳米结构的制备和组装及其在多功能器件中的应用

获取原文
获取原文并翻译 | 示例

摘要

One-dimensional (1D) semiconducting nanostructures have been extensively studied in the past few decades due to their excellent electrical, chemical and optical properties, which enable remarkable performance in various applications such as electronic/optoelectronic devices, chemical/biological sensors and energy harvesting. Since water pollution becomes as one of the most challenging global issues, photocatalytic degradation has received considerable attentions as an efficient water treatment technology with regard to removing organic contaminants. Upon receiving UV or sunlight irradiation with energy higher than their bandgap, semiconducting materials generate charge carriers such as electrons and holes that react with water and produce reactive species for decomposition. TiO2 and ZnO are the most widely used photocatalysts because of their higher degradability and lower production cost. Especially, TiO2 and ZnO nanostructures exhibit better degradability thanks to their low recombination of charge carriers and large active surface areas. However, the challenges like low utilization of sunlight (mainly responsive to UV light) and non-recyclability limit their large-scale use as photocatalysts. In this work, we tackle these limitations by developing a new immobilized photocatalytic system to improve their recyclability and investigating a novel semiconductor-semiconductor heterogeneous material to enhance their optical response in the visible region. First, ZnO nanowires (NWs) have been synthesized using a hydrothermal process and hybridized with silicon nanocrystals (SiNCs). This heterojunction lowers the ZnO bandgap (more active under visible light) and exhibits superior photodegradation performance under the visible and white light conditions compared to original ZnO NW photocatalysts. Second, we have developed a novel fabrication technique to create a vertically-aligned ZnO NW array on a polymer substrate with strong adhesion. The proposed two-step fabrication process allows the part of NWs to be embedded into the polymer matrix, securing the nanomaterials for harsh operating environments. A ZnO-NW/Polydimethylsiloxane (PDMS) film presents the unique immobilized photocatalytic system that can float on the water surface, targeting buoyant pollutants. In particular, crude oil has been used a model pollutant for degradation experiment. A strong adhesion of ZnO NWs to the polymer substrate also enables two new implementations of the photocatalytic system including the application with high shear stresses and piezoelectrocalysis. The latter application is particularly interesting as organic pollutants were degraded via mechanical vibration without resorting to light energy. Finally, this two-step synthesis technique combined with strain engineering allows us to create multifunctional soft micromotors, i.e., the ZnO-NWs/PDMS submillimeter 3D structures integrated with various nanomaterials (metal nanoparticle catalysts, magnetic nanoparticles, etc.). The micromotors possess multiple functionalities such as photocatalysis, piezoelectrocatalysis, locomotion/self-propulsion, and magnetic response. This level of multifunctionality integration on a single platform can be rarely found in the literature. In the end, an immobilized photocatalytic system with high surface areas, improved mass transfer, and easy recyclability has been developed, which can find its uses in biomedical and environmental applications. Apart from the photocatalytic applications, the research has also been oriented to address some technical challenges in deterministic assembly of the solution-processed 1D nanostructures for device integration.
机译:一维(1D)半导体纳米结构由于其出色的电,化学和光学特性而在过去的几十年中得到了广泛的研究,这些结构使它们在电子/光电设备,化学/生物传感器和能量收集等各种应用中均具有出色的性能。由于水污染已成为全球最具挑战性的问题之一,因此光催化降解作为一种有效的水处理技术,在去除有机污染物方面受到了广泛的关注。半导体材料在受到紫外线或阳光照射的能量高于其带隙后,会生成电荷载流子,例如电子和空穴,它们与水发生反应并产生可分解的反应性物质。 TiO2和ZnO因其较高的可降解性和较低的生产成本而成为最广泛使用的光催化剂。尤其是,TiO2和ZnO纳米结构由于其电荷载流子的低重组和较大的活性表面积而具有更好的可降解性。但是,诸如阳光利用率低(主要是对紫外线的响应)和不可回收性等挑战限制了它们大规模用作光催化剂。在这项工作中,我们通过开发一种新型的固定化光催化系统来改善其可回收性,并研究一种新型的半导体-半导体异质材料来增强其在可见光区域的光学响应,从而解决了这些局限性。首先,已经使用水热工艺合成了ZnO纳米线(NWs),并与硅纳米晶体(SiNCs)杂交。与原始的ZnO NW光催化剂相比,这种异质结降低了ZnO带隙(在可见光下更具活性),并在可见光和白光条件下表现出优异的光降解性能。其次,我们开发了一种新颖的制造技术,可以在具有强粘合力的聚合物基板上创建垂直排列的ZnO NW阵列。所提出的两步制造过程允许将NW的一部分嵌入到聚合物基体中,从而确保纳米材料可用于恶劣的操作环境。 ZnO-NW /聚二甲基硅氧烷(PDMS)膜具有独特的固定化光催化系统,该系统可漂浮在水面上,以漂浮的污染物为目标。尤其是,原油已被用作模型污染物进行降解实验。 ZnO NW对聚合物基材的强粘附力还使光催化系统的两​​个新实现成为可能,包括施加高剪切应力和压电电解。后一种应用特别有趣,因为有机污染物可通过机械振动降解而无需依靠光能。最后,这种两步合成技术与应变工程相结合,使我们能够创建多功能的软微电机,即与各种纳米材料(金属纳米颗粒催化剂,磁性纳米颗粒等)集成的ZnO-NWs / PDMS亚毫米3D结构。微型电动机具有多种功能,例如光催化,压电催化,运动/自推进和磁响应。在单个平台上的这种多功能集成水平在文献中很少见。最后,已开发出具有高表面积,改进的质量传递和易于回收利用的固定化光催化系统,可以在生物医学和环境应用中找到其用途。除了光催化应用之外,该研究还针对解决在溶液处理的一维纳米结构的确定性组装以进行设备集成中的一些技术难题。

著录项

  • 作者

    Zhang, Yaozhong.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号