首页> 外文学位 >Thermal Management Techniques for Field Programmable Gate Arrays
【24h】

Thermal Management Techniques for Field Programmable Gate Arrays

机译:现场可编程门阵列的热管理技术

获取原文
获取原文并翻译 | 示例

摘要

Thermal aware design methodologies are gaining increased attention in the age of high performance computing. The emergence of three dimensional integration has opened up a world of possibilities in the realm of high density Field Programmable Gate Array (FPGA) based designs. Applications such as concurrency mining, deep learning and data mining are all being implemented on FPGAs due to the amazing flexibility and the performance per watt advantage FPGAs have over Application Specific Integrated Circuit (ASIC) based solutions. These types of compute-intensive applications bring with them the problem of efficient thermal management. Increased power densities lead to thermal hot spots and drop in performance. In this dissertation, we propose a placement level technique to minimize the thermal gradient of FPGA based designs. In the second part of the dissertation, we focus on the integration of microfluidics with FPGA designs. Microfluidic cooling involves the application of microchannel heatsinks for more effective cooling of integrated circuits. This technology is currently not in widespread commercial use due to technological and cost considerations but microchannel heatsinks are expected to become mainstream in the coming years. In this work, the performance of microhannel heat sinks is compared against air cooled heat sinks to demonstrate why air cooled heat sinks will not be sufficient to cool 3D FPGAs. The microchannel simulations were performed using a state of the art academic thermal emulator to determine optimal microchannel designs. A flow to mitigate the impact of coolant self heating is also proposed.
机译:在高性能计算时代,热感知设计方法越来越受到关注。三维集成的出现在基于高密度现场可编程门阵列(FPGA)的设计领域开辟了无限的可能性。由于惊人的灵活性和FPGA相对于基于专用集成电路(ASIC)的解决方案具有的每瓦性能优势,并发挖掘,深度学习和数据挖掘等应用程序都已在FPGA上实现。这些类型的计算密集型应用程序带来了有效的热管理问题。功率密度的增加会导致热点和性能​​下降。在本文中,我们提出了一种贴装级技术,以最小化基于FPGA的设计的热梯度。在论文的第二部分中,我们将重点放在微流体与FPGA设计的集成上。微流体冷却涉及微通道散热器的应用,以更有效地冷却集成电路。由于技术和成本方面的考虑,该技术目前尚未广泛用于商业用途,但是微通道散热器有望在未来几年内成为主流。在这项工作中,将微通道散热器与空气冷却散热器的性能进行了比较,以说明为什么空气冷却散热器不足以冷却3D FPGA。使用最先进的学术热仿真器进行微通道仿真,以确定最佳的微通道设计。还提出了减轻冷却剂自热影响的流程。

著录项

  • 作者

    Deshpande, Girish.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

  • 入库时间 2022-08-17 11:54:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号