首页> 外文学位 >Modeling of Filament Deposition Rapid Prototyping Process with a Closed form Solution
【24h】

Modeling of Filament Deposition Rapid Prototyping Process with a Closed form Solution

机译:长丝沉积快速成型过程的封闭形式建模

获取原文
获取原文并翻译 | 示例

摘要

Fused Deposition Modeling (FDM(TM)) or fused filament fabrication (FFF) systems are extrusion-based technologies used to produce functional or near functional parts from a wide variety of plastic materials. First patented by S. Scott Crump and commercialized by Stratasys, Ltd in the early 1990s, this technology, like many additive manufacturing systems, offers significant opportunities for the design and production of complex part structures that are difficult if not impossible to produce using traditional manufacturing methods. Standing on the shoulders of a twenty-five year old invention, a rapidly growing open-source development community has exponentially driven interest in FFF technology. However, part quality often limits use in final product commercial markets. Development of accurate and repeatable methods for determining material strength in FFF produced parts is essential for wide adoption into mainstream manufacturing.;This study builds on the empirical, squeeze flow and intermolecular diffusion model research conducted by David Grewell and Avraham Benatar, applying a combined model to predict auto adhesion or healing to FFF part samples. In this research, an experimental study and numerical modeling were performed in order to drive and validate a closed form heat transfer solution for extrusion processes to develop temperature field models. An extrusion-based 3D printing system, with the capacity to vary deposition speeds and temperatures, was used to fabricate the samples. Standardized specimens of Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) filament were used to fabricate the samples with different speeds and temperatures. Micro-scanning of cut and lapped specimens, using an optical microscope, was performed to find the effect of the speed and the temperature on the geometry of the cross-sections.;It was found that by increasing the speed of the extrusion printing, the area of the cross-section and the maximum thickness decrease, while the weld/bead geometry minimum thickness increases at higher speeds, although actual part strength appeared to plateau for speeds above 15mm/sec. Temperature effect was found to increase the geometry minimum thickness. In most cases, test results show that by increasing the speed and the temperature, the geometry strength increases. Non-Linear finite element based numerical modeling was performed to predict the strength of the samples. The geometry produced from the optical microscope scanning and typical PLA material properties were used to create the model. The finite element model was able to predict the strength of the tested samples at different speeds and temperatures. Analysis of resulting data and examination of tested samples offer favorable insights and opportunities for additional and continuing investigation.
机译:熔融沉积建模(FDM™)或熔融长丝制造(FFF)系统是基于挤出的技术,用于从多种塑料材料生产功能性或接近功能性的零件。这项技术与许多增材制造系统一样,首先由S. Scott Crump申请专利,并于1990年代初由Stratasys,Ltd.商业化,为复杂零件结构的设计和生产提供了重大机遇,而这些复杂零件结构即使使用传统制造方法也很难甚至不可能制造。方法。站在25年前发明的肩膀上,一个快速增长的开源开发社区对FFF技术的兴趣成倍增长。但是,零件质量通常会限制最终产品商业市场中的使用。开发精确且可重复的方法来确定FFF生产零件的材料强度对于广泛应用于主流制造至关重要;该研究基于David Grewell和Avraham Benatar进行的经验模型,挤压流动和分子间扩散模型研究,并应用了组合模型预测对FFF零件样品的自动粘附或愈合。在这项研究中,进行了实验研究和数值建模,以驱动和验证用于挤压工艺的封闭形式传热解决方案,以开发温度场模型。基于挤压的3D打印系统具有改变沉积速度和沉积温度的能力,可用于制造样品。使用聚乳酸(PLA)和丙烯腈丁二烯苯乙烯(ABS)丝的标准样品来制作具有不同速度和温度的样品。使用光学显微镜对切割和研磨的样品进行微扫描,以发现速度和温度对横截面几何形状的影响;发现通过提高挤压印刷的速度,截面面积和最大厚度减小,而焊缝/焊道几何形状的最小厚度在较高速度下增大,尽管在15mm / sec以上的速度下实际零件强度似乎达到平稳状态。发现温度效应增加了几何最小厚度。在大多数情况下,测试结果表明,通过提高速度和温度,几何强度会提高。进行了基于非线性有限元的数值建模,以预测样品的强度。使用光学显微镜扫描产生的几何形状和典型的PLA材料特性创建模型。有限元模型能够预测不同速度和温度下测试样品的强度。结果数据的分析和测试样品的检验提供了有益的见解和机会,可以进行进一步的持续调查。

著录项

  • 作者

    Devlin, Steven Leon.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Industrial engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号