首页> 外文学位 >Image Analysis Methods for Identification and Segmentation of Biological Structures using Machine Learning Techniques
【24h】

Image Analysis Methods for Identification and Segmentation of Biological Structures using Machine Learning Techniques

机译:利用机器学习技术识别和分割生物结构的图像分析方法

获取原文
获取原文并翻译 | 示例

摘要

Image processing and analysis techniques often include segmentation where an image is subdivided into constituent objects based on certain classification techniques using descriptors like shape, size and other features. There are multiple techniques to achieve desired segmentation and each technique works only on specific types of data. Therefore, using an appropriate technique based on the data and environment is necessary.;The focus of this thesis is on developing segmentation techniques to identify biological structures in an image and perform categorical classification of identified structures. This thesis begins with introduction to workflows that extract information from histology images, specifically, Immunohistochemistry (IHC) images followed by anatomic organ segmentation from thoracic CT image volumes. Specific contributions include the following:;Extraction of microvessels from stained brightfield images representing hippocampal region of a mouse brain and analysis of stain uptake signal in microvessels to aid in understanding the protein distribution in the blood brain barrier (BBB). Stained microvessels are classified from the objects in the image by leveraging the label maps that are developed using features recognized by gabor filter banks. The classification task is accomplished by training a random forest to identify microvessels. The observed average false positive rate for this classification is less than 6%.;Identifying of mRNA signal which represent tumor cells in RNAscope images. The algorithm employed to accomplish the classification of the signals from tumor positive cells from the tumor negative cells is color deconvolution which is available open source as an ImageJ plugin. The size of the uncompressed wholeslide RNAscope images and the operations involved in color deconvolution makes using the standard open source implementation impractical. Here, a GPU accelerated rapid color deconvolution algorithm is implemented which exhibits a wallclock time speed up of 108x with same accuracy as obtained from standard open source implementation.;Organ identification and segmentation in thorax CT images. Firstly, drawbacks of a traditional superpixel method using centroidal voronoi tessallations (CVT) and graph-cuts is discussed which motivates the necessity of a convolutional neural network (CNN) based organ identification method. The CNNs we employ are an improvement to a typical CNN as it leverages the spatial anatomic relationship between the organs in the inference stage. The CNN outputs are also enhanced by a novel data augmentation method which utilizes realistic simulations of common anatomical variations in the anatomy found across representative patient population.identification. The average value of the detector accuracies for the right lung, left lung, and heart in the augmented dataset were found to be 94.87%, 95.37%, and 90.76% after the standard CNN stage, respectively. Introduction of spatial relationship using a Bayes classifier improved the detector accuracies to 95.14%, 96.20%, and 95.15%, respectively, showing a marked improvement in heart detection.;Further, a delineation leg is added to the CNN which employs upsampling and upconvolution techniques to extend the detection results to image voxel level. The average accuracy for organ delineation obtained using our CNNs was found to be 95.85%.
机译:图像处理和分析技术通常包括分割,其中基于某些分类技术,使用形状,大小和其他特征等描述符将图像细分为组成对象。有多种技术可实现所需的分割,并且每种技术仅适用于特定类型的数据。因此,有必要使用一种基于数据和环境的适当技术。本论文的重点是开发分割技术,以识别图像中的生物结构并对识别的结构进行分类。本文首先介绍了从组织学图像中提取信息的工作流程,特别是从免疫组织化学(IHC)图像中提取信息,然后从胸部CT图像体积中进行解剖器官分割。具体贡献包括以下内容:从代表小鼠大脑海马区的染色明场图像中提取微血管,并分析微血管中的污渍吸收信号,以帮助了解血脑屏障(BBB)中的蛋白质分布。通过利用利用gabor滤波器组识别的特征开发的标签图,从图像中的对象对染色的微血管进行分类。通过训练随机森林以识别微血管来完成分类任务。在该分类中观察到的平均假阳性率小于6%。在RNAscope图像中鉴定代表肿瘤细胞的mRNA信号。用于完成对来自肿瘤阴性细胞的肿瘤阳性细胞信号分类的算法是颜色反卷积,它可以作为ImageJ插件在开源中获得。未压缩的全片RNAscope图像的大小以及涉及颜色反卷积的操作使得使用标准的开放源代码实现方式不可行。在这里,实现了GPU加速的快速彩色反卷积算法,该算法可将挂钟时间加速至108倍,其精度与从标准开放源代码实施中获得的精度相同。首先,讨论了使用质心voronoi镶嵌(CVT)和图割的传统超像素方法的弊端,这激发了基于卷积神经网络(CNN)的器官识别方法的必要性。我们采用的CNN是对典型CNN的改进,因为它在推断阶段利用了器官之间的空间解剖关系。 CNN的输出还通过一种新颖的数据增强方法得到了增强,该方法利用了在具有代表性的患者群体中发现的常见解剖结构变化的真实模拟。在标准CNN阶段之后,增强数据集中右肺,左肺和心脏的检测器准确度平均值分别为94.87%,95.37%和90.76%。使用贝叶斯分类器引入空间关系可以将检测器的准确度分别提高到95.14%,96.20%和95.15%,显示出心脏检测的显着改善。将检测结果扩展到图像体素水平。发现使用我们的CNN获得的器官轮廓的平均准确度为95.85%。

著录项

  • 作者

    Soans, Rajath Elias.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Computer engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号