首页> 外文学位 >Ion Transport Phenomena at the Nanoscale in Different Model Battery Systems
【24h】

Ion Transport Phenomena at the Nanoscale in Different Model Battery Systems

机译:不同模型电池系统中纳米尺度的离子迁移现象

获取原文
获取原文并翻译 | 示例

摘要

Lithium ion battery technology has flourished since its introduction into the consumer market. Not only has it helped revolutionize consumer electronics, it also compliments R&D into clean forms of energy harvest e.g. solar, wind, and hydro-electric. As demand for the technology grows, innovative approaches have been taken to improve capacity, output, and lifetime in Li-ion batteries. The approach studied in this research involves the inclusion of nanostructures, which have the potential to significantly increase capacity. While several techniques to fabricate nanostructures are understood, underlying phenomena governing ion transport in and around these nanostructures is only partially understood, which could directly impact design principles for such devices.;This thesis examines a variety of model systems which could serve to simulate environments found in proposed devices and answer questions regarding ion transport phenomena. The main components we studied from such battery systems were electrolyte and cathode materials. The electrolyte experiences different ion transport phenomena arising from the nanoconfinement of the cathode structures both around and inside the electrode material. Thus, having model systems to examine electrolyte and cathode material separately and in tandem is useful for elucidating phenomena without the challenge of deconvolution resulting from other current-carrying mechanisms.;Our main tools for carrying out our research were synthetic nanopores. The nanopore structures afforded means to access nanoscale, control environment, and even fabricate components for study. By studying the current-voltage curves in these systems, we were able to draw meaningful conclusions about mechanisms of ion transport in these model systems. The main findings of this research include the inducement of positive surface charge on nanopore structures by organic solvent-based electrolytes by means of dipole and/or ion adsorption, positive evidence of gel electrolyte fitting current models of ion current rectification, and the impact of oxidation state and cycling in cathode material on ion transport through its porous media. Each of these findings is directly related to the thrust of the research and potentially provide insights for future battery design.
机译:自从锂离子电池技术进入消费市场以来,它一直蓬勃发展。它不仅帮助革新了消费类电子产品,还使研发成为清洁的能量收集形式,例如太阳能,风能和水力发电。随着对技术的需求的增长,已经采取了创新的方法来提高锂离子电池的容量,输出和寿命。在这项研究中研究的方法涉及包含纳米结构,这可能会显着提高容量。尽管了解了几种制造纳米结构的技术,但仅部分了解了控制离子在这些纳米结构内和周围传输的潜在现象,这可能直接影响此类设备的设计原理。本论文研究了可用于模拟发现的环境的各种模型系统在建议的设备中回答有关离子迁移现象的问题。我们从此类电池系统研究的主要成分是电解质和阴极材料。由于在电极材料周围和内部的阴极结构的纳米约束,电解质经历了不同的离子传输现象。因此,有一个模型系统来分别和串联地检查电解质和阴极材料,对于阐明现象而没有其他载流机制引起的反褶积的挑战是有用的。;我们进行研究的主要工具是合成纳米孔。纳米孔结构提供了进入纳米级,控制环境,甚至制造研究部件的手段。通过研究这些系统中的电流-电压曲线,我们能够得出关于这些模型系统中离子迁移机理的有意义的结论。这项研究的主要发现包括:通过偶极和/或离子吸附,有机溶剂基电解质在纳米孔结构上产生正表面电荷;凝胶电解质拟合离子电流整流电流模型的积极证据;以及氧化的影响离子通过多孔介质传输时,阴极材料的状态和循环。这些发现中的每一个都与研究的方向直接相关,并有可能为未来的电池设计提供见解。

著录项

  • 作者

    Plett, Timothy Stephen.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Biophysics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号