首页> 外文学位 >Thermal and Electrical Transport in Thin-Film Materials for Energy Management
【24h】

Thermal and Electrical Transport in Thin-Film Materials for Energy Management

机译:薄膜材料中的热和电传输以进行能量管理

获取原文
获取原文并翻译 | 示例

摘要

With the rapidly growing global demand in energy nowadays, innovation and technology become critical for a transition to renewable energy, high energy efficiency or low-carbon emission. Thin-film materials are especially favorable in energy management due to the easy integration into devices. The transport properties for heat and electrical conduction are critical not only to achieve a better fundamental understanding of underlying physics, but also to develop proper and efficient operation of devices. In order to apply the Materials Genome paradigm to calculate the properties of possible new energy materials, the performance of existing materials must be properly characterized, first. This thesis studies three materials corresponding to three aspects of energy management: storage, efficiency, and conversion.;For energy storage, metal organic frameworks (MOF) are a category of highly porous materials with large surface area for natural gas adsorption and storage. Thermal conductivity is a crucial parameter for managing the exothermal process of gas adsorption as well as the endothermal process of gas desorption in MOFs, but experimental studies up to now have been limited. As a case study of MOFs, the cross-plane thermal conductivity of a zeolitic imidazolate framework (ZIF)-8 was experimentally determined on thin films using the 3-omega technique at different partial pressures in perfluorohexane, nitrogen, air, or vacuum ambients at room temperature. The observed thermal conductivity was observed to be approximately independent of ambient gas species and pressure ranging from atmospheric pressure down to vacuum. This approach of probing MOF thermal conductivity with gas adsorption establishes a method for studying MOFs with different gas ambients for effective thermal management for adsorbed natural gas applications.;In terms of energy efficiency, transparent conducting oxide InGaZnO (IGZO) is a commercialized high-performance active channel material in transparent thin-film transistors. IGZO consumes less power due to its high carrier mobility, low leakage current and good transparency. For effective thermal management of IGZO-based devices, a comprehensive study measured the thermal conductivity of various different phases of amorphous (a-IGZO), semicrystalline (semi-c-IGZO), and c-axis-aligned single-crystal-like IGZO (c-IGZO) grown by various physical deposition and chemical synthesis approaches. The atomic structures of the amorphous and crystalline films were simulated with ab initio molecular dynamics, and the film morphology was assessed by multiple X-ray techniques. The temperature-dependent thermal conductivity showed pronounced dependence on porosity, crystallinity, and shelf time. All samples are consistent with the porosity-adapted CahillPohl (p-CP) model of minimum thermal conductivity.;Lastly for energy conversion, pxn-type transverse thermoelectric (TTE) is a new paradigm where the material shows n -type and p-type behavior in two orthogonal crystal axes, respectively, leading to effective heat flow perpendicular to the current flow. Both thin-film and bulk materials will be relevant for energy harvesting and energy management applications. To facilitate the rapid discovery of new pxn-type TTE by employing Material Genome, we introduce the criteria to identify bulk pxn TTE's from the calculated three-dimensional Seebeck tensor. A thorough search is conducted in the past literature for ambipolor compounds as pxn-type transverse thermoelectric candidates, for which the figure of merit and critical angles are calculated to evaluate their potential performance. To better understand the underlying mechanism of anisotropy, band structure and thermopower calculation are also conducted on two representative compounds.;Besides the bulk ambipolar compounds, the type-II superlattice of InAs/GaSb is another pxn-type TTE which can be prepared in thin-film form. For these novel materials, the emphasis is currently on testing and developing the appropriate characterization methods of their thermal and electrical conduction so that these advanced materials can be researched and improved. Both the in-plane and cross-plane thermal conductivities are characterized by 2-wire 3-omega method. A measurement example of T2SL is also shown from room temperature down to 15 K. To deconvolve the electrical characteristics of each carrier species in this multi-carrier system, Fourier-domain mobility spectrum analysis (FMSA) is developed in Matlab with an intuitively simple algorithm, fast convergence, low computational cost, simplicity of implementation, and good fitting accuracy. The temperature-dependent measurement examples of T2SL are shown for both thermal conductivity and FMSA.
机译:随着当今全球能源需求的快速增长,创新和技术对于向可再生能源,高能效或低碳排放的过渡至关重要。薄膜材料由于易于集成到设备中,因此在能源管理方面特别有利。导热和导电的传输特性不仅对于更好地了解基础物理原理至关重要,而且对于开发设备的正确有效的运行至关重要。为了应用材料基因组范例来计算可能的新能源材料的特性,首先必须适当地表征现有材料的性能。本文研究了与能源管理的三个方面相对应的三种材料:存储,效率和转换。对于能源存储,金属有机骨架(MOF)是一类高孔隙率的材料,具有大的表面积,可用于天然气的吸附和存储。导热系数是在MOF中管理气体吸附的放热过程以及气体解吸的吸热过程的关键参数,但是到目前为止,实验研究仍然很有限。作为MOF的案例研究,使用3-Ω技术在全氟己烷,氮气,空气或真空环境中,在不同分压下,通过3-Ω技术在薄膜上通过实验确定了沸石咪唑酸酯骨架(ZIF)-8的横截面热导率。室内温度。观察到的所观察到的热导率与环境气体种类和压力(从大气压下降到真空)大致无关。这种通过气体吸附探测MOF热导率的方法建立了一种研究具有不同气体环境的MOF的方法,以有效地管理天然气吸附气体;从能效方面来看,透明导电氧化物InGaZnO(IGZO)是一种商业化的高性能透明薄膜晶体管中的有源沟道材料。 IGZO由于其高的载流子迁移率,低的漏电流和良好的透明度而消耗较少的功率。为了对基于IGZO的器件进行有效的热管理,一项综合研究测量了非晶(a-IGZO),半晶(semi-c-IGZO)和c轴对齐的单晶状IGZO各个不同相的导热率(c-IGZO)通过各种物理沉积和化学合成方法生长。用从头算分子动力学模拟了非晶和结晶膜的原子结构,并通过多种X射线技术评估了膜的形态。随温度变化的热导率对孔隙率,结晶度和保存时间表现出明显的依赖性。所有样品均与孔隙率最小的CahillPohl(p-CP)模型一致。最后,对于能量转换,pxn型横向热电(TTE)是一种新的范式,其中材料显示n型和p型分别在两个正交晶轴上的行为,导致垂直于电流的有效热流。薄膜材料和散装材料都将与能量收集和能量管理应用相关。为了通过使用材料基因组来促进新pxn型TTE的快速发现,我们引入了从计算出的三维Seebeck张量识别大量pxn TTE的标准。在过去的文献中对作为pxn型横向热电候选物的含两性化合物进行了彻底的搜索,为此计算了品质因数和临界角以评估其潜在性能。为了更好地理解各向异性的基本机理,还对两种代表性化合物进行了能带结构和热功率计算。除块状双极性化合物外,InAs / GaSb的II型超晶格是另一种pxn型TTE,可以薄型制备。电影形式。对于这些新颖的材料,当前的重点是测试和开发其导热和导电的适当表征方法,以便可以研究和改进这些先进的材料。面内和跨面热导率均通过2线3-Ω方法来表征。还显示了从室温到15 K的T2SL的一个测量示例。为使该多载波系统中每种载波的电学特性反卷积,在Matlab中使用直观简单的算法开发了傅里叶域迁移谱分析(FMSA) ,收敛速度快,计算成本低,实现简单且拟合精度高。显示了T2SL的温度相关测量示例的热导率和FMSA。

著录项

  • 作者

    Cui, Boya.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号