首页> 外文学位 >Adapting Seismic Processing Techniques for Data Preconditioning in Radar Imaging of Highly Dissipative and Dispersive Media
【24h】

Adapting Seismic Processing Techniques for Data Preconditioning in Radar Imaging of Highly Dissipative and Dispersive Media

机译:适应性地震处理技术,在高耗散和弥散介质的雷达成像中进行数据预处理

获取原文
获取原文并翻译 | 示例

摘要

The concept of using microwave frequency electromagnetic waves for biomedical imaging applications has interested researchers for decades. Promising results have been reported for several approaches to microwave breast imaging, including radar-based imaging applied to realistic numerical breast phantoms and patient studies. However, important problems have also been identified, specifically, low image resolution and sensitivity due to multiple-scattering effects and frequency-dependent attenuation in the presence of highly dissipative and dispersive breast tissues.;Microwave imaging and seismic imaging deal with analogous problems. In seismic imaging, tremendous efforts have been invested in developing data analysis and preconditioning techniques to render the accurate graphical representation of specific portions of the earth's subsurface geological structure. The overall objective of this thesis is to produce more accurate microwave breast images from ultra-wideband radar signals by adapting advanced seismic imaging techniques. First, we develop a method based on first-breaks to detect the pulse arrival time in the presence of severe waveform distortion. Second, we adapt Gabor nonstationary deconvolution to accurately estimate the subsurface reflectivity in the presence of severe attenuation and dispersion due to EM wave propagation in highly lossy dispersive biological tissues at microwave frequencies. Third, we develop a dual deconvolution processing flow (DDPF) to account for the interfering responses present in a radar reflection measurement system.;The proposed methods are applied to simulated and measured data. The results indicate that the first-break time is able to provide consistent and reliable reference for travel time estimation in the presence of severe waveform distortion and Gabor deconvolution is able to effectively compensate for wave attenuation in highly lossy and dispersive media. The preliminary imaging test demonstrated a significant improvement in the image sensitivity with Gabor deconvolution preconditioned data. Application to the simulations of realistic breast phantoms and experimental patient scans shows that the DDPF method is able to detect the scatterers in the presence of heterogeneous, lossy, and dispersive tissues. Overall, this study demonstrates successful modification of seismic data preconditioning techniques to biomedical radar data, resulting in images with improved accuracy.
机译:将微波频率电磁波用于生物医学成像应用的概念数十年来一直引起研究人员的兴趣。对于微波乳腺成像的几种方法,已经报道了令人鼓舞的结果,包括应用于现实数字乳腺体模和患者研究的基于雷达的成像。然而,还发现了重要的问题,特别是在存在高度耗散和弥散性乳腺组织的情况下,由于多重散射效应和频率相关的衰减而导致的图像分辨率和灵敏度低。微波成像和地震成像处理了类似的问题。在地震成像中,已经投入了巨大的精力来开发数据分析和预处理技术,以精确地图形表示地球地下地质结构的特定部分。本文的总体目标是通过采用先进的地震成像技术,从超宽带雷达信号中产生更准确的微波乳房图像。首先,我们开发了一种基于先发中断的方法,以在严重波形失真的情况下检测脉冲到达时间。其次,我们采用Gabor非平稳解卷积来准确估计在电磁波在微波频率下高损耗色散生物组织中由于电磁波传播而引起的严重衰减和色散的情况下的地下反射率。第三,我们开发了一种双重去卷积处理流程(DDPF)来解决雷达反射测量系统中存在的干扰响应。所提出的方法被应用于模拟和测量数据。结果表明,在出现严重的波形失真的情况下,首破时间能够为行进时间估计提供一致且可靠的参考,而Gabor反卷积能够有效补偿高损耗和色散介质中的波衰减。初步成像测试表明,使用Gabor反卷积预处理数据可以显着提高图像灵敏度。在现实的人体模型仿真和患者实验扫描中的应用表明,DDPF方法能够在存在异质,有损和分散组织的情况下检测散射体。总的来说,这项研究表明成功地将地震数据预处理技术修改为生物医学雷达数据,从而获得了精度更高的图像。

著录项

  • 作者

    Liu, Yuhong.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Electrical engineering.;Medical imaging.;Geophysics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号