首页> 外文学位 >Electronic transport in novel nanoscale systems: Graphene and metal oxide switches.
【24h】

Electronic transport in novel nanoscale systems: Graphene and metal oxide switches.

机译:新型纳米系统中的电子传输:石墨烯和金属氧化物开关。

获取原文
获取原文并翻译 | 示例

摘要

While traditional electronic components based on silicon technology are reaching the limit of miniaturization, researchers in both academia and industry are exploring novel materials and nanoscale devices based on new mechanisms. The first part of the dissertation will focus on electronic transport in graphene, a monolayer of carbon atoms proposed as the new promising material for carbon nanoelectronics. We observed electron ballistic transport phenomenon, proximity induced supercurrent and geometry-dependent minimum conductivity in graphene. In the ballistic transport regime, electrons propagate in graphene without any obstacle and scattering only happens on the interface of graphene and electrodes. This phenomenon can be realized by quantum interference of multiple reflected electronic waves between normal electrodes and multiple Andreev reflections from superconducting electrodes. Our discoveries may have important implications for graphene nanoelectronic devices, such as ballistic transistors.;The second part of the dissertation focuses on electrical transport in metal oxide based switches, which are promising candidates as the basis of next generation non-volatile random access memory and future nanoscale neuromorphic computation circuits. By performing the pressure-modulated conductance microscopy, for TiO2 based molecular devices with conductance between G Q and 2GQ (GQ is the conductance quantum), we observed oscillation of conductance with inter-electrode spacing at room temperature, which can be explained by quantum interference of electron waves between two partially transmitting electrodes. By performing the pressure-modulated conductance microscopy on TiO2 memristive nano-switches, AFM force modulation of tunnel gaps is realized and will also be discussed.
机译:当基于硅技术的传统电子组件达到微型化的极限时,学术界和工业界的研究人员都在探索基于新机制的新型材料和纳米器件。论文的第一部分将集中在石墨烯中的电子传输,石墨烯是碳原子的单层,被提议作为碳纳米电子学的新材料。我们观察到石墨烯中的电子弹道传输现象,邻近感应超电流和几何相关的最小电导率。在弹道传输机制中,电子在石墨烯中传播而没有任何障碍,并且散射仅发生在石墨烯和电极的界面上。这种现象可以通过正常电极之间多次反射的电子波的量子干涉以及来自超导电极的多次安德列夫反射实现。我们的发现可能对石墨烯纳米电子器件(例如弹道晶体管)具有重要意义。论文的第二部分重点研究基于金属氧化物的开关中的电传输,这有望成为下一代非易失性随机存取存储器的基础。未来的纳米级神经形态计算电路。通过进行压力调制的电导显微镜,对于电导在GQ和2GQ之间的TiO2基分子器件(GQ是电导量子),我们观察到电导在室温下具有电极间间距的振荡,这可以解释为两个部分传输电极之间的电子波。通过在TiO2忆阻纳米开关上进行压力调制电导显微镜,可以实现隧道间隙的AFM力调制,并将对此进行讨论。

著录项

  • 作者

    Miao, Feng.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Physics Electricity and Magnetism.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 电磁学、电动力学;
  • 关键词

  • 入库时间 2022-08-17 11:38:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号