首页> 外文学位 >A General Multidisciplinary Turbomachinery Design Optimization system Applied to a Transonic Fan.
【24h】

A General Multidisciplinary Turbomachinery Design Optimization system Applied to a Transonic Fan.

机译:应用于跨音速风扇的通用多学科涡轮机械设计优化系统。

获取原文
获取原文并翻译 | 示例

摘要

The blade geometry design process is integral to the development and advancement of compressors and turbines in gas generators or aeroengines. A new airfoil section design capability has been added to an open source parametric 3D blade design tool. Curvature of the meanline is controlled using B-splines to create the airfoils. The curvature is analytically integrated to derive the angles and the meanline is obtained by integrating the angles. A smooth thickness distribution is then added to the airfoil to guarantee a smooth shape while maintaining a prescribed thickness distribution. A leading edge B-spline definition has also been implemented to achieve customized airfoil leading edges which guarantees smoothness with parametric eccentricity and droop.;An automated turbomachinery design and optimization system has been created. An existing splittered transonic fan is used as a test and reference case. This design was more general than a conventional design to have access to the other design methodology. The whole mechanical and aerodynamic design loops are automated for the optimization process. The flow path and the geometrical properties of the rotor are initially created using the axi-symmetric design and analysis code (T-AXI). The main and splitter blades are parametrically designed with the created geometry builder (3DBGB) using the new added features (curvature technique). The solid model creation of the rotor sector with a periodic boundaries combining the main blade and splitter is done using MATLAB code directly connected to SolidWorks including the hub, fillets and tip clearance. A mechanical optimization is performed with DAKOTA (developed by DOE) to reduce the mass of the blades while keeping maximum stress as a constraint with a safety factor. A Genetic algorithm followed by Numerical Gradient optimization strategies are used in the mechanical optimization. The splittered transonic fan blades mass is reduced by 2.6% while constraining the maximum stress below 50% material yield strength using 2D sections thickness and chord multipliers.;Once the initial design was mechanically optimized, a CFD optimization was performed to maximize efficiency and/or stall margin. The CFD grid generator (AUTOGRID) reads 3DBGB output and accounts for hub fillets and tip gaps. Single and Multi-objective Genetic Algorithm (SOGA, MOGA) optimization have been used with the CFD analysis system. In SOGA optimization, efficiency was increased by 3.525% from 78.364% to 81.889% while only changing 4 design parameters. For MOGA optimization with higher weighting efficiency than stall margin, the efficiency was increased by 2.651% from 78.364% to 81.015% while the static pressure recovery factor was increased from 0.37407 to 0.4812286 that consequently increases the stall margin.;The design process starts with a hot shape design, and then a hot to cold transformation process is explained once the optimization process ends which smoothly subtracts the mechanical deflections from the hot shape. This transformation ensures an accurate tip clearance.;The optimization modules can be customized by the user as one full optimization or multiple small ones. This allows the designer not to be eliminated from the design loop which helps in taking the right choice of parameters for the optimization and the final feasible design.
机译:叶片几何设计过程是气体发生器或航空发动机中压缩机和涡轮机的开发和进步所不可或缺的。开源参数化3D叶片设计工具中增加了新的机翼截面设计功能。使用B样条曲线控制平均线的曲率以创建翼型。通过分析积分曲率以得出角度,并通过积分角度获得均值线。然后将平滑的厚度分布添加到机翼,以确保平滑的形状,同时保持规定的厚度分布。还采用了前缘B样条曲线定义,以实现定制的机翼前缘,从而确保具有参数偏心率和下垂度的平滑度。;已创建了自动化的涡轮机械设计和优化系统。现有的分流式跨音速风扇用作测试案例和参考案例。该设计比常规设计更通用,可以使用其他设计方法。整个机械和空气动力学设计循环是自动化的,用于优化过程。转子的流路和几何特性最初是使用轴对称设计和分析代码(T-AXI)创建的。主叶片和分离器叶片使用新增的功能(曲率技术),使用创建的几何图形生成器(3DBGB)进行参数化设计。使用直接连接到SolidWorks的MATLAB代码(包括轮毂,圆角和叶尖间隙),通过将周期性的边界与主叶片和分离器相结合来创建转子扇形的实体模型。利用DAKOTA(由DOE开发)进行机械优化,以减少叶片的质量,同时将最大应力保持为安全系数的约束。在机械优化中使用遗传算法和数值梯度优化策略。使用2D截面厚度和弦倍增器,分流式跨音速风扇叶片质量减少了2.6%,同时将最大应力限制在材料屈服强度的50%以下;一旦对机械进行了初步优化,便进行了CFD优化以最大程度地提高效率和/或摊位保​​证金。 CFD网格生成器(AUTOGRID)读取3DBGB输出,并计算出轮毂圆角和尖端间隙。 CFD分析系统已使用单目标和多目标遗传算法(SOGA,MOGA)优化。在SOGA优化中,仅更改4个设计参数,效率就从78.364%提高到81.889%,提高了3.525%。对于具有比失速裕度更高的加权效率的MOGA优化,将效率从78.364%提高到2.501%至81.015%,而静压恢复因子从0.37407增加到0.4812286,从而增加了失速裕度。热形状设计,然后在优化过程结束后说明从热到冷的转变过程,该过程平稳地从热形状中减去机械变形。这种转换可确保准确的刀尖间隙。;优化模块可以由用户定制为一个完整的优化或多个小的优化。这使设计人员不会从设计循环中消失,这有助于正确选择参数以进行优化和最终可行的设计。

著录项

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Aerospace engineering.;Design.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号