首页> 外文学位 >Modeling and Analysis of Tritium Transport in Multi-Region Lead-Lithium Liquid Metal Blankets.
【24h】

Modeling and Analysis of Tritium Transport in Multi-Region Lead-Lithium Liquid Metal Blankets.

机译:多区域铅锂液态金属毯中Transport迁移的建模与分析。

获取原文
获取原文并翻译 | 示例

摘要

It is critical to be able to predict tritium transport in lead-lithium liquid metal (LM) blankets with great accuracy to provide information for fusion reactor safety and economy analyses. However, tritium transport processes are complex and affected by multiple physics such as magnetohydrodynamic (MHD) flow, yet there is no single computer code capable of simulating these phenomena inclusively. Thus the objectives of this research are: 1) to develop mathematical models and computational codes to quantify both tritium distributions throughout the blanket and the permeation loss rate from LM to helium coolant, and 2) to evaluate the key factors that govern tritium permeation and distribution.;To accomplish these objectives, a computational framework for analyzing tritium transport phenomena affected by multi-physics and geometric features has been developed. Models have been proposed to integrate multiple tritium transfer processes, including transport inside the LM MHD flow, transfer across the material interface, and permeation through the structural materials and into the helium coolant. Numerical schemes have been developed and implemented in the code to link the different transport mechanisms. The developed model and code have been validated against the data from the US-JA TITAN experiments on hydrogen transport through an alpha-Fe/PbLi system and in-reactor tritium release data from lead-lithium, and the modeling results agree well with the experimental data.;Parametric studies are performed to quantify the MHD effects, buoyancy effects, PES effects, and the uncertainties of transport properties. The MHD effects reduce the tritium permeation rate due to the higher velocity near the wall. However, the rate of decrease is reduced at higher Hartmann numbers. The buoyancy effect on tritium transport in the LM MHD flows is revealed. Its tritium inventory drops by 80%, and the permeation rate drops by 20% for an upward flow compared to a downward flow. If a PES is introduced on the wall parallel to the magnetic field, tritium loss rate increases by 15% because the velocity is reduced near the front wall. The range of permeation rate change on the basis of uncertainties of transport properties is also provided, and the effect of the uncertainty of tritium solubility is significant. Furthermore, as the FCI electric conductivity increases from 5 to 500 O-1 m-1, the tritium permeation rate decreases by 46% due to the increasing velocity in the gap. Lastly, the difference in tritium permeation rates between dual coolant lead lithium (DCLL) and helium-cooled lead lithium (HCLL) blanket concepts is quantified. The tritium permeation loss percentage from the HCLL concept is about one order of magnitude higher than from the DCLL concept (∼ 17%. vs. 1.2%). This is mainly due to a much lower velocity and thus a much higher tritium partial pressure for the HCLL concept.;The computational models and results stated in this work provide guidance on the lead-lithium liquid metal blanket designs to comply tritium control requirements with regard to the reduction in tritium permeation and inventory and on planning the experiments for database evaluation.
机译:至关重要的是,能够高精度地预测铅-锂液态金属(LM)覆盖层中的transport运输,以为聚变反应堆安全性和经济性分析提供信息。但是,tri的运输过程很复杂,并受磁流体动力学(MHD)流动等多种物理因素的影响,但是还没有一个能够完全模拟这些现象的计算机代码。因此,本研究的目标是:1)开发数学模型和计算代码,以量化整个保护层中tri的分布以及从LM到氦冷却剂的渗透损失率,以及2)评估控制tri渗透和分布的关键因素为了实现这些目标,已经开发了用于分析受多物理场和几何特征影响的tri迁移现象的计算框架。已经提出了整合多个integrate传输过程的模型,包括LM MHD流内部的传输,跨材料界面的传输以及通过结构材料的渗透并进入氦冷却剂。已经开发并在代码中实现了数字方案,以链接不同的传输机制。所开发的模型和代码已针对来自US-JA TITAN的关于通过α-Fe/ PbLi系统进行氢传输的实验数据以及铅锂中反应器中tri的释放数据进行了验证,并且建模结果与实验结果非常吻合进行参数研究以量化MHD效应,浮力效应,PES效应以及运输特性的不确定性。由于壁附近的较高速度,MHD效应降低了t的渗透速率。但是,当Hartmann数较高时,下降速度会降低。揭示了LM MHD流中on运输的浮力效应。与向下流动相比,向上流动的tri存量下降了80%,渗透率下降了20%。如果在平行于磁场的壁上引入PES,则the的损失率会增加15%,因为前壁附近的速度会降低。还提供了基于传输性质的不确定性的渗透率变化的范围,并且solubility溶解度的不确定性的影响是显着的。此外,随着FCI电导率从5增加到500 O-1 m-1,由于间隙中速度的增加,the的渗透率降低了46%。最后,量化了双冷却液铅锂(DCLL)和氦冷却铅锂(HCLL)覆盖层概念之间的per渗透率差异。 HCLL概念的渗透损失百分比比DCLL概念的〜渗透损失百分比高约一个数量级(约17%对1.2%)。这主要是由于HCLL概念的速度要低得多,因此thus的分压要高得多。这项工作中陈述的计算模型和结果为铅锂液态金属覆盖层设计提供了指导,以符合有关regard的控制要求。减少tri的渗透和库存,并计划进行实验以进行数据库评估。

著录项

  • 作者

    Zhang, Hongjie.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Mechanical engineering.;Nuclear engineering.;Energy.
  • 学位 D.Env.
  • 年度 2014
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号