首页> 外文学位 >Modeling and Simulation of Avascular Tumor Growth using a Level Set Method.
【24h】

Modeling and Simulation of Avascular Tumor Growth using a Level Set Method.

机译:使用水平集方法对无血管肿瘤生长进行建模和仿真。

获取原文
获取原文并翻译 | 示例

摘要

A major challenge in matrix-metalloproteinase (MMP) target validation and MMP-inhibitor-drug development for anti-cancer clinical trials is to better understand their complex roles (often competing with each other) in tumor progression. For this purpose, we have developed avascular tumor models capable of examining the complex interaction between avascular solid tumors and their host environment and explored the impact of directed cell motion (chemotaxis and haptotaxis) on the tumor growth and morphology. We have presented three increasingly sophisticated mathematical models of solid tumor growth and their numerical solutions in two spatial dimensions. First, we have developed a continuum model and have examined the effects of haptotaxis due to extracellular matrix (ECM) gradients (caused by degradation of ECM by MMP) on tumor progression and morphology for different cell-cell and cell-ECM adhesion (modeled as surface tension), proliferation and apoptosis rates of tumors growing in nutrient-rich and low-nutrient environments. Morphological instabilities are observed for non-necrotic tumor growth in low-nutrient environment due to the effect of haptotaxis, with the no. of fingers increasing with decreasing surface tension, consistent with the results of previous hybrid (discrete-continuum) models. On the other hand, haptotaxis causes no distinct effect on morphology for fingering growth in nutrient-rich environment. Both chemotaxis (due to nutrient gradients) and haptotaxis lead to shape instability for both low cell proliferation and high apoptosis rates. Therefore inducing high apoptosis during cancer therapy may not be successful for chemotaxis/haptotaxis dominated tumor growth. Next, we have developed a continuum model to explore the growth-inhibiting influences of the gradients of soluble fragments of ECM through chemotaxis on the progression and morphology of a tumor growing in nutrient-rich and nutrient-poor microenvironments with variations of surface tension and for low cell proliferation. A parametric study has been conducted to explore the effects of varying ECM degradation rate, the production rate of matrix degrading enzymes (MDE), and the conversion factor of ECM into soluble ECM. We find that chemotaxis strongly influences tumor growth and morphology, and the instabilities caused by tumor cell proliferation and haptotactic movements can be completely damped out by enforcing the extent of chemotaxis. However, the influence of chemotaxis and the above factors is found to be stronger in low-nutrient environments than that in nutrient-rich environments. As the extent of chemotaxis increases, the effects of cell adhesion on tumor growth and shape becomes negligible. For low cell mitosis, chemotaxis may causes the tumor to shrink, as the extent of chemotaxis increases, but in some cases chemotaxis may initiate shape instability Finally we have developed a continuum model to examine the influence of ECM degradation by membrane type MMP (MT-MMP) through haptotaxis in low and high nutrient environment with different surface-tensions, proliferation and apoptosis rates. We compare these effects with that of MMP-mediated effects and find that, in the absence of necrosis, ECM degradation by MMP gives faster growth and more fingers than that for MT-MMP for low-nutrient environment, even with low proliferation rate, whereas they both lead to similar unstable morphologies for high apoptosis rates. There is no significant differences in the morphologies for MMP and MT-MMP mediated proteolysis for high-nutrient environment. Similarly, we get no significant differences in the morphologies for necrotic tumor growth in both environments although MT-MMP gives faster growth rate. We have solved the models using a level set based interface capturing method and conducted detailed investigation of the effects of MDEs on tumor growth dynamics and morphology over a broad range of biophysical parameters. Our models can predict the tumor growth and morphology due to both promoting and inhibitory effects of MDEs with variations of tissue environment and will, therefore, be helpful to design combination therapies including selective MDE inhibition.
机译:用于抗癌临床试验的基质金属蛋白酶(MMP)目标验证和MMP抑制剂药物开发的主要挑战是更好地了解它们在肿瘤进展中的复杂作用(经常相互竞争)。为此,我们开发了能够检查无血管实体瘤与其宿主环境之间复杂相互作用的无血管肿瘤模型,并探讨了定向细胞运动(趋化和触觉趋向)对肿瘤生长和形态的影响。我们已经提出了三个日益复杂的实体瘤生长数学模型及其在两个空间维度上的数值解。首先,我们建立了一个连续模型,并研究了由于细胞外基质(ECM)梯度(由MMP降解ECM引起)的触觉感对于不同细胞-细胞和细胞-ECM粘附的肿瘤进展和形态的影响(建模为在高营养和低营养环境中生长的肿瘤的表面张力),增殖和凋亡率。由于触觉的影响,在低营养环境中观察到非坏死性肿瘤生长的形态学不稳定性。手指的手指随着表面张力的降低而增加,这与以前的混合(离散连续)模型的结果一致。另一方面,触觉对营养丰富的环境中指状生长的形态没有明显影响。趋化性(由于营养梯度)和触觉性导致低细胞增殖和高凋亡率的形状不稳定。因此,对于趋化/触觉主导的肿瘤生长,在癌症治疗期间诱导高凋亡可能并不成功。接下来,我们建立了一个连续模型,以探索通过趋化作用的ECM可溶性片段梯度对生长在具有高营养和低营养微环境中的肿瘤的进展和形态的生长抑制影响,所述微环境具有表面张力的变化,并且对于细胞增殖低。已经进行了参数研究,以探索变化的ECM降解速率,基质降解酶(MDE)的产生速率以及ECM转化为可溶性ECM的转化因子的影响。我们发现趋化性强烈影响肿瘤的生长和形态,并且通过增强趋化性的程度可以完全消除由肿瘤细胞增殖和触觉运动引起的不稳定性。但是,发现低营养环境中趋化性和上述因素的影响要强于营养丰富的环境。随着趋化程度的增加,细胞粘附对肿瘤生长和形状的影响可忽略不计。对于低细胞有丝分裂,趋化性可能会随着趋化程度的增加而使肿瘤缩小,但在某些情况下,趋化性可能会引发形状不稳定性。最后,我们开发了一个连续模型来检查膜型MMP(MT- MMP)在低营养和高营养环境中通过触觉作用而具有不同的表面张力,增殖和凋亡率。我们将这些效应与MMP介导的效应进行了比较,发现在没有坏死的情况下,即使在低营养环境下,即使增殖率较低,MMP降解ECM的速度也比MT-MMP更快,并且手指更多。它们都导致高凋亡率的相似不稳定形态。对于高营养环境,MMP和MT-MMP介导的蛋白水解的形态没有显着差异。同样,尽管MT-MMP的生长速度较快,但两种环境下坏死性肿瘤的生长形态均无明显差异。我们已经使用基于水平集的界面捕获方法对模型进行了求解,并在广泛的生物物理参数上对MDE对肿瘤生长动力学和形态的影响进行了详细研究。我们的模型可以预测由于MDE的促进作用和抑制作用随组织环境的变化而导致的肿瘤生长和形态,因此将有助于设计包括选择性MDE抑制在内的联合疗法。

著录项

  • 作者

    Nargis, Nurun Nahar.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Mechanical engineering.;Biomedical engineering.;Molecular biology.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号