首页> 外文学位 >Magnetostructural and magnetodielectric coupling in spinel oxides.
【24h】

Magnetostructural and magnetodielectric coupling in spinel oxides.

机译:尖晶石氧化物的磁结构和磁电耦合。

获取原文
获取原文并翻译 | 示例

摘要

Spinels oxides are of great interest functionally as multiferroic, battery, and magnetic materials as well as fundamentally because they exhibit novel spin, structural, and orbital ground states. Competing interactions are at the heart of novel functional behavior in spinels. Here, we explore the intricate landscape of spin, lattice, and orbital interactions in magnetic spinels by employing variable-temperature high-resolution synchrotron x-ray powder diffraction, total neutron scattering, magnetic susceptibility, dielectric, and heat capacity measurements. We show that the onset of long-range magnetic interactions often gives rise to lattice distortions. We present the complete crystallographic descriptions of the ground state structures of several spinels, thereby paving the way for accurate modeling and design of structure-property relationships in these materials. We also report the emergence of magnetodielectric coupling in the magnetostructural phases of some of the studied spinels.;We begin by examining spin-lattice coupling in the Jahn-Teller active systems NiCr2O4 and CuCr2O4. Orbital ordering yields a cubic to tetragonal lattice distortion in these materials above their magnetic ordering temperatures, however, we find that magnetic ordering also drives structural distortions in these spinels through exchange striction. We provide the first orthorhombic structural descriptions of NiCr 2O4 and CuCr2O4. Our observation of strong spin-lattice coupling in NiCr2O4 and CuCr 2O4 inspired the study of magnetodielectric coupling in these spinels. Magnetocapacitance measurements of NiCr2O4 reveal multiferroic behavior and new magnetostructural distortions below the Neel temperature. This observation illustrates the sensitivity of dielectric measurements to magnetostructural transitions in spinel materials. Finally, in the examination of NiCr2O4 we show that magnetodielectric coupling is well described by Ginzburg-Landau theory.;In addition to exchange striction, geometric frustration couples spin interactions to the lattice of the spinels MgCr2O4 and ZnCr2O4. Novel spin ground states that are important for memory and quantum computing applications are predicted to exist in these spinels. However, their structural and spin ground states are not well understood. We find that tetragonal and orthorhombic phases coexist in antiferromagnetic MgCr2O4 and ZnCr2O4. The structural deformations in these materials lift spin degeneracy by primarily distorting the pyrochlore Cr sublattice. In subsequent studies, we probe the effect of adding dilute spins on the non-magnetic cation sites of MgCr2O 4 and ZnCr2O4. Substitution of Co2+ cations in Zn1-xCoxCr2O4 completely suppress the spin-Jahn-Teller distortion of ZnCr2O4 while, Cu2+ substitutions in Mg1-xCuxCr 2O4 and Zn1-xCuxCr2O 4 induce Jahn-Teller distortions at temperatures above their magnetic ordering temperatures. The Jahn-Teller distortions of Mg1-xCu xCr2O4 and Zn1-xCuxCr 2O4 do not lift spin degeneracy, therefore magnetic ordering is still suppressed down to low temperatures. We show that only more than 20% magnetic A substituents can lift spin degeneracy in MgCr 2O4 and ZnCr2O4.;We have also examined the magnetostructural phase transition of the spinel Mn3O4. We show that Mn3O4 undergoes a magnetostructural phase transition from tetragonal I4 1/amd symmetry to a phase coexistence regime consisting of tetragonal I41/amd and orthorhombic Fddd symmetries. Phase coexistence in Mn3O4 is mediated by strain due to a significant lattice mismatch between the low temperature orthorhombic phase and the high temperature tetragonal phase. We propose that strain could be used to control the structure and properties of Mn3O4.;Our investigations of spin-driven lattice distortions in spinel oxides illustrate that structural phase coexistence is prevalent for spinels with Neel temperatures below 50 K.
机译:尖晶石氧化物在功能上作为多铁性,电池和磁性材料备受关注,从根本上讲,因为它们显示出新颖的自旋,结构和轨道基态。竞争性相互作用是尖晶石新功能行为的核心。在这里,我们通过使用可变温度的高分辨率同步加速器X射线粉末衍射,总中子散射,磁化率,介电常数和热容测量,探索了磁性尖晶石中自旋,晶格和轨道相互作用的复杂情况。我们表明,长距离电磁相互作用的发生通常会引起晶格畸变。我们提供了几种尖晶石基态结构的完整晶体学描述,从而为这些材料中的结构-特性关系的精确建模和设计铺平了道路。我们还报道了一些尖晶石的磁结构相中磁电耦合的出现。我们首先研究了Jahn-Teller活性体系NiCr2O4和CuCr2O4中的自旋-晶格耦合。在这些材料的磁性有序温度之上,轨道有序会在这些材料中产生立方到四方晶格畸变,但是,我们发现,磁性有序也通过交换约束来驱动这些尖晶石的结构畸变。我们提供了NiCr 2O4和CuCr2O4的第一个斜方结构描述。我们对NiCr2O4和CuCr 2O4中强自旋-晶格耦合的观察激发了对这些尖晶石中磁电耦合的研究。 NiCr2O4的磁电容测量显示了在Neel温度以下的多铁性行为和新的磁结构畸变。该观察结果说明了介电测量对尖晶石材料中磁结构转变的敏感性。最后,在对NiCr2O4的检查中,我们发现Ginzburg-Landau理论很好地描述了磁电耦合。除了交换严格性之外,几何挫折还将自旋相互作用耦合到尖晶石MgCr2O4和ZnCr2O4的晶格上。这些尖晶石中存在着对存储器和量子计算应用很重要的新型自旋基态。但是,它们的结构和自旋基态并没有被很好地理解。我们发现四方相和正交相共存于反铁磁MgCr2O4和ZnCr2O4中。这些材料中的结构变形通过主要使烧绿石Cr亚晶格变形来提升自旋简并性。在随后的研究中,我们探讨了在MgCr2O 4和ZnCr2O4的非磁性阳离子位点上添加稀有自旋的影响。 Zn1-xCoxCr2O4中的Co2 +阳离子取代完全抑制了ZnCr2O4的自旋Jahn-Teller畸变,而Mg1-xCuxCr 2O4和Zn1-xCuxCr2O 4中的Cu2 +取代在高于其磁有序温度的温度下引起Jahn-Teller畸变。 Mg1-xCu xCr2O4和Zn1-xCuxCr 2O4的Jahn-Teller形变不会提高自旋简并性,因此在低温下仍可抑制磁序。我们表明,只有超过20%的磁性A取代基可以提高MgCr 2O4和ZnCr2O4中的自旋简并性。;我们还研究了尖晶石Mn3O4的磁结构相变。我们显示Mn3O4经历了从四方I4 1 / amd对称到四方I41 / amd和正交Fddd对称组成的相共存机制的磁结构相变。 Mn3O4中的相共存是由于低温正交晶相和高温四方相之间明显的晶格失配所引起的应变而介导的。我们建议可以使用应变来控制Mn3O4的结构和性能。;我们对尖晶石氧化物中自旋驱动晶格畸变的研究表明,Neel温度低于50 K的尖晶石普遍存在结构相共存。

著录项

  • 作者

    Kemei, Moureen Chemurgor.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 264 p.
  • 总页数 264
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号