首页> 外文学位 >Gamma-Ray Background Variability in Mobile Detectors.
【24h】

Gamma-Ray Background Variability in Mobile Detectors.

机译:移动探测器中的伽马射线背景变异性。

获取原文
获取原文并翻译 | 示例

摘要

Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation.;The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms.;The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background.;This is accomplished by making many hours of background measurements with a truck-mounted system, which utilizes high-purity germanium detectors for spectroscopy and sodium iodide detectors for coded aperture imaging. This system also utilizes various peripheral sensors, such as panoramic cameras, laser ranging systems, global positioning systems, and a weather station to provide context for the gamma-ray data. About three hundred hours of data were taken in the San Francisco Bay Area, covering a wide variety of environments that might be encountered in operational scenarios. These measurements were used in a source injection study to evaluate the sensitivity of different algorithms (imaging and spectroscopy) and hardware (sodium iodide and high-purity germanium detectors).;These measurements confirm that background distributions in large, mobile detector systems are dominated by systematic, not statistical variations, and both spectroscopy and imaging were found to substantially reduce this variability. Spectroscopy performed better than the coded aperture for the given scintillator array (one square meter of sodium iodide) for a variety of sources and geometries. By modeling the statistical and systematic uncertainties of the background, the data can be sampled to simulate the performance of a detector array of arbitrary size and resolution. With a larger array or lower resolution detectors, however imaging was better able to compensate for background variability.
机译:在野外搜索放射源时(例如在国土安全应用的广域搜索中),伽马射线背景辐射会大大降低检测灵敏度。特别地,移动检测器系统必须与不一定已知或什至是先验的可变背景竞争。这项工作将提出对背景时空变化的测量,目的是将伽马射线检测,光谱学和成像与上下文信息(一种普遍存在的背景辐射的“核街景”)结合起来。射线背景源自多种来源,包括自然和人为来源。该领域的主要来源是原始同位素40钾,铀238和or 232以及它们的衰变子代。除了自然背景外,许多人造同位素也被用于工业或医学目的,在许多环境中都可以发现裂变产物的污染。无论起源如何,这些背景都会通过增加统计和系统不确定性来降低检测灵敏度。特别是,大型探测器阵列将受到背景中系统不确定性的限制,并将遭受高误报率的困扰;该工作的目标是对γ射线背景及其可变性进行全面表征以提高检测灵敏度并评估现场移动探测器的性能。为了研究误报率非常低的性能,需要测量大量数据。在存在这种测量背景的对照研究中,比较了光谱学和成像这两种不同的方法。此外,还可以通过将伽玛射线数据与上下文数据流(例如照相机和全球定位系统)相关联来获取其他信息,以减少背景的变化。使用车载系统进行测量,该系统利用高纯度锗探测器进行光谱学分析,并使用碘化钠探测器进行编码孔径成像。该系统还利用各种外围传感器,例如全景相机,激光测距系统,全球定位系统和气象站,以提供伽马射线数据的上下文。在旧金山湾区大约采集了300个小时的数据,涵盖了操作场景中可能遇到的各种环境。这些测量用于源注入研究中,以评估不同算法(成像和光谱学)和硬件(碘化钠和高纯锗探测器)的灵敏度。这些测量证实大型移动探测器系统中的背景分布主要由系统的变化,而不是统计上的变化,并且光谱学和成像技术都被发现可以大大减少这种变化。对于各种光源和几何形状,对于给定的闪烁体阵列(一平方米的碘化钠),光谱学的性能优于编码孔径。通过对背景的统计和系统不确定性建模,可以对数据进行采样以模拟任意大小和分辨率的检测器阵列的性能。使用较大的阵列或较低分辨率的检测器时,成像可以更好地补偿背景变化。

著录项

  • 作者

    Aucott, Timothy John.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Nuclear engineering.;Radiation.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号