首页> 外文学位 >Failure Mechanisms of Metallic Glasses via Atomic Scale Simulations.
【24h】

Failure Mechanisms of Metallic Glasses via Atomic Scale Simulations.

机译:通过原子尺度模拟的金属玻璃的失效机理。

获取原文
获取原文并翻译 | 示例

摘要

Metallic glasses (MGs) are an emerging class of structural materials that can achieve a combination of striking mechanical properties, such as high strength, large elastic limit, high fracture toughness, plastic-like processability, etc. However, the wide application of MGs in daily life is largely hindered by their extreme tensile brittleness and the uncertainty in their fatigue behavior. The underlying failure mechanisms are experimentally intractable due to spatiotemporal limitations.;Here, we designed several novel atomic simulation methods to reveal atomic insights on the tensile and fatigue failure mechanisms. Under tension, we found that the failure of MGs is triggered by cavitation and that the fast shear flow can decrease MGs' resistance to cavitation by a surprisingly large amount, which explains the extreme tensile brittleness. Under cyclic loading, we found that the life of MG nanowires follows the Coffin-Manson relationship, which can be further derived from the plastic strain controlled microscopic damage accumulation. By force field tuning methods, we demonstrated that the propensity of both the tensile brittleness and the fatigue failure of MGs is correlated with Poisson's ratio and the degree of covalency in the bonding. The atomic insights discovered here shed light on how to improve the tensile ductility and reliability of MGs, via tuning the elastic properties, thermal properties and sample size.
机译:金属玻璃(MGs)是一类新兴的结构材料,可以兼具惊人的机械性能,例如高强度,大弹性极限,高断裂韧性,类塑料加工性等。但是,MGs在以下领域的广泛应用极端的拉伸脆性和疲劳行为的不确定性极大地阻碍了人们的日常生活。由于时空的限制,潜在的失效机制在实验上是难以解决的。在这里,我们设计了几种新颖的原子模拟方法来揭示关于拉伸和疲劳失效机制的原子见解。在拉力作用下,我们发现MG的破坏是由空化引起的,而快速的剪切流可以使MG的抗空化能力出乎意料的大,这说明了极高的拉伸脆性。在循环载荷下,我们发现MG纳米线的寿命遵循Coffin-Manson关系,这可以进一步从塑性应变控制的微观损伤累积中得出。通过力场调整方法,我们证明了MG的拉伸脆性和疲劳破坏的倾向与泊松比和结合的共价程度有关。此处发现的原子洞察力揭示了如何通过调节弹性,热性质和样品大小来提高MG的拉伸延展性和可靠性。

著录项

  • 作者

    Luo, Jian.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Materials science.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号