首页> 外文学位 >Bridging the nano- and macro-worlds: Thermal property measurement using thermal microscopy and photothermal radiometry - application to particle-irradiation damage profile in ZrC.
【24h】

Bridging the nano- and macro-worlds: Thermal property measurement using thermal microscopy and photothermal radiometry - application to particle-irradiation damage profile in ZrC.

机译:桥接纳米世界和宏观世界:使用热显微镜和光热辐射法测量热性质-在ZrC中应用于粒子辐照损伤曲线。

获取原文
获取原文并翻译 | 示例

摘要

Multiscaled experimental investigations of heat transfer from nanoscales to macroscales are requisite to progress in energy technologies. In nuclear applications, material properties can undergo significant alteration due to destructive interaction with irradiating particles at microstructural levels that affect bulk properties. Correlating material microstructure to bulk material properties remains a crucial hurdle for obtaining first-principles-based, full-scale material property predictive capability. Ion-irradiated material studies provide valuable insight into material behavior under irradiation conditions that can be correlated to neutron irradiation effects. Through such studies, the need of costly (money and time) studies of neutron interaction with materials can be mitigated significantly. One of the challenges associated with studies of ion-irradiated materials is that the affected layer, or penetration depth, is typically very thin (~0.1-100&mgr;m for laboratory accelerators). Few investigations have been reported of ion-irradiation effects on thermal transport properties, in part, due to the challenge associated with measurements at the spatial scales of the zones of interest.;This study expands the current knowledge base regarding thermal transport in ion-irradiated materials through the use of a multiscaled experimental approach using thermal wave methods. In a manner not previously explored, four thermal wave methods are used to characterize the proton-irradiated layer in ZrC including scanning thermal microscopy, spatial-scanning front-detection photothermal radiometry (PTR), lock-in IR thermography (lock-in IRT), and tomographic, frequency-based PTR. For the first time, the in-depth thermal conductivity profile of an ion-irradiated sample is measured directly. The profiles obtained by each of the spatial scanning methods are compared to each other and the numerical prediction of the ion-damage profile. The complementary nature of the various techniques validates the measured profile and the measured degradation of thermal conductivity in the ZrC sample showing the viability of such complementary studies.
机译:从纳米尺度到宏观尺度的传热的多尺度实验研究是能源技术进步的必要条件。在核应用中,由于材料的性质会因与辐射粒子在微观结构水平上的破坏性相互作用而发生重大变化,从而影响整体性能。使材料微观结构与块状材料性能相关联仍然是获得基于第一原理的全面材料性能预测能力的关键障碍。离子辐照材料研究为辐照条件下的材料行为提供了有价值的见解,这些条件可能与中子辐照效应相关。通过这样的研究,可以大大减轻中子与材料相互作用的昂贵(金钱和时间)研究的需要。与离子辐照材料研究相关的挑战之一是,受影响的层或渗透深度通常非常薄(实验室促进剂约为0.1-100μm)。很少有研究报道离子辐照对热传输特性的影响,部分是由于与关注区域的空间尺度上的测量相关的挑战所致。该研究扩展了有关离子辐照热传递的当前知识基础。通过使用热波方法的多尺度实验方法来使用材料。以以前未曾探索的方式,使用四种热波方法来表征ZrC中质子辐照层,包括扫描热显微镜,空间扫描前检测光热辐射法(PTR),锁定红外热成像(锁定IRT)以及基于频率的断层扫描PTR。首次直接测量了离子辐照样品的深度热导率曲线。将通过每种空间扫描方法获得的轮廓相互比较,并对离子损伤轮廓进行数值预测。各种技术的互补性质验证了ZrC样品中测得的轮廓和测得的热导率降低,表明了此类互补研究的可行性。

著录项

  • 作者

    Jensen, Colby Bruce.;

  • 作者单位

    Utah State University.;

  • 授予单位 Utah State University.;
  • 学科 Mechanical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:08

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号