首页> 外文学位 >Proper Orthogonal Decomposition Based Reduced Order Modeling for Fluid Flow.
【24h】

Proper Orthogonal Decomposition Based Reduced Order Modeling for Fluid Flow.

机译:基于正确正交分解的流体流动降阶建模。

获取原文
获取原文并翻译 | 示例

摘要

Proper orthogonal decomposition-based reduced order modeling is a technique that can be used to develop low dimensional models of fluid flow. In this technique, the Navier-Stokes equations are projected onto a finite number of POD basis functions resulting in a system of ODEs that model the system. The overarching goal of this work is to determine the best methods of applying this technique to generate reliable models of fluid flow. The first chapter investigates some basic characteristics of the proper orthogonal decomposition using the Burgers equation as a surrogate model problem. In applying the POD to this problem, we found that the eigenvalue spectrum is affected by machine precision and this leads to non-phsical negative eigenvalues in the POD. To avoid this, we introduced a new method called deflation that gives positive eigenvalues, but has the disadvantage that the orthogonality of the POD modes is more affected by numerical precision errors. To reduce the size of eigenproblem of POD process, the well-known snapshot method was tested. It was found that the number of snapshots required to obtain an accurate eigenvalue spectrum was determined by the smallest time scale of the phenomenon. After resolving this time scale, the errors in the eigenvalues and modes drop rapidly then converge with second-order accuracy. After obtaing POD modes, the ROM error was assessed using two errors, the error of projection of the problem onto the POD modes (the out-plane error) and the error of the ROM in the space spanned by POD modes (the in-plane error). The numerical results showed not only is the in-plane error bounded by the out-plane error (in agreement with theory) but it actually converges faster than the out-of-plane error. The second chapter is dedicated to building a robust POD-ROM for long term simulation of Navier-Stokes equation. The ability of the POD method to decompose the simulation and the capability of POD-ROM to simulate a low and high Reynolds flow over a NACA0015 airfoil was studied. We observed that POD can be applied for low Reynolds flows successfully if a proper stabilization method is used. For the high Reynolds case, the convergence of the eigenvalues spectrum with respect to duration of time window from we observed that the number of modes needed to simulate a certain time window increases almost linearly with the length of the time window. So, generating a POD-ROM for high Reynolds flow that reproduced the correct long-term limit cycle behavior needs many more modes than has been usually used in the literature. In the last chapter, we address the problem that the standard method of generating POD modes may be inaccurate when used "off-design" (at parameter values not used to generate the POD). We tested some of the popular methods developed to remedy that problem. The accuracy of these methods was in direct relation with the amount of data provided for those methods. So, in order to generate appropriate POD modes, very large POD problems must be solved. To avoid this, a new multi-level method, called recursive POD, for enriching the POD modes is introduced that mathematically provides optimal POD modes while reducing the computational size of problem to a manageable degrees. A low Reynolds flow over NACA 0015, actuated with constant suction/blowing of a fluidic jet located on top surface of airfoil is used as benchmark to test the technique. The flow is shifted from one periodic state to another periodic state due to fluidic jet effect. It was found that the modes extracted with the recursive POD method are as accurate as the modes of the best known method, global POD, while the computational effort is lower.
机译:正确的基于正交分解的降阶建模是一种可用于开发流体流动的低维模型的技术。在这种技术中,将Navier-Stokes方程投影到有限数量的POD基函数上,从而形成对系统进行建模的ODE系统。这项工作的总体目标是确定应用该技术生成可靠的流体模型的最佳方法。第一章研究了使用Burgers方程作为替代模型问题的适当正交分解的一些基本特征。在将POD应用于此问题时,我们发现特征值谱受机器精度的影响,这会导致POD中出现非物理的负特征值。为了避免这种情况,我们引入了一种称为放气的新方法,该方法给出正特征值,但缺点是POD模式的正交性受数值精度误差的影响更大。为了减小POD过程的本征问题的大小,测试了众所周知的快照方法。已经发现,获得准确特征值谱所需的快照数量由现象的最小时间尺度决定。在解决了这个时间尺度之后,特征值和模式的误差迅速下降,然后以二阶精度收敛。在获得POD模式后,使用两个错误评估ROM错误,即将问题投影到POD模式的错误(平面外错误)和ROM在POD模式跨越的空间中的错误(平面内错误)。错误)。数值结果表明,平面误差不仅受平面误差的限制(与理论相符),而且收敛速度比平面误差还快。第二章致力于构建健壮的POD-ROM,用于Navier-Stokes方程的长期仿真。研究了POD方法分解模拟的能力以及POD-ROM模拟在NACA0015机翼上的低雷诺流动和高雷诺流动的能力。我们观察到,如果使用适当的稳定方法,则POD可以成功应用于低雷诺流量。对于高雷诺兹情况,特征值谱相对于时间窗口持续时间的收敛性来自我们观察到,模拟某个时间窗口所需的模式数量几乎随时间窗口的长度线性增加。因此,要生成高雷诺流量的POD-ROM,以再现正确的长期极限循环行为,就需要比文献中通常使用的模式更多的模式。在上一章中,我们解决了一个问题,即在“非设计”状态下使用(不用于生成POD的参数值)生成POD模式的标准方法可能不准确。我们测试了一些为解决该问题而开发的流行方法。这些方法的准确性与为这些方法提供的数据量直接相关。因此,为了生成适当的POD模式,必须解决非常大的POD问题。为避免这种情况,引入了一种新的称为递归POD的多级方法,用于丰富POD模式,该方法在数学上可提供最佳POD模式,同时将问题的计算规模减小到可管理的程度。雷诺气流在NACA 0015上的流量较低,由位于机翼顶部表面的射流不断吸/吹动致动,以此作为测试该技术的基准。由于射流的作用,流体从一种周期性状态转变为另一种周期性状态。发现使用递归POD方法提取的模式与最知名的方法全局POD的模式一样准确,而计算工作量则较低。

著录项

  • 作者

    Behzad, Fariduddin.;

  • 作者单位

    Clarkson University.;

  • 授予单位 Clarkson University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号