首页> 外文学位 >Modeling coating variability in a continuous tablet coating pan.
【24h】

Modeling coating variability in a continuous tablet coating pan.

机译:在连续的片剂包衣锅中模拟包衣变异性。

获取原文
获取原文并翻译 | 示例

摘要

Continuous coating of tablets is a recent trend in the pharmaceutical industry and is expected to improve the efficiency of the coating process. In this work, coating variability, which is one of the most important critical quality attributes of the coating process, is studied. Both inter-tablet coating variability and intra-tablet coating variability are studied.;For a continuous coater, the inter-tablet coating variability depends on the residence time of the tablets in the coater which in turn is dependent on the axial motion of the tablets. A mathematical framework based on renewal theory is developed and an expression for inter-particle coating variability is obtained that accounts for the variance in the residence time of particles inside the coater. This model makes no assumptions on the nature of the particle axial motion. Discrete element method simulations have shown, however, that the particle axial motion can be accurately modeled by a combination of advective and diffusive motion characterized by an axial Peclet number. Using this advective-diffusive model, it was found that in order to maintain an inter-particle coating variability of less than 1%, typical of what might be required for functional pharmaceutical tablet coatings, a Peclet number of 20,000 is required. Such a large Peclet number would require essentially plug flow for typical continuous coater lengths of 1 m, or coater lengths of at least 15 m for typical particle diffusion coefficients and feed rates. These findings suggest the use of a compartmentalized continuous coater very similar to a batch coater with tablets moving along the length of the drum.;Assuming a compartmentalized continuous coater, a compartment-model based population balance (PB) model is developed to reduce the computational time required to study the motion of tablets using Discrete Element Method (DEM) modeling. A compartment model consisting of a spray zone and active and passive bed zones is proposed based on the motion of the particles in a rotating drum. The parameters for the resulting coupled set of PB equations are estimated by fitting the time varying coating mass variability curve from the first few tens of seconds (35 s - 85 s) of DEM simulation data. The long term coating mass variability (1,000 s) is predicted using the PB model and compared with direct measurements from the DEM simulations. Excellent agreement was obtained between the model and DEM simulations with a relative error of less than 5% for the three cases studied.;In order to study the intra-tablet coating variability, a new image based algorithm is developed which is at least an order of magnitude faster than ray-tracing based methods. The surface of the tablet is divided into panels and the coating mass on each of the panels is identified using a GPU based method. The coating mass distribution on the tablet surface is compared to experimental measurements of coating thickness over the tablet surface. Good agreement is obtained between the simulations and experiments for the average coating mass distribution on the tablet surface. A new approach is also developed to obtain the asymptotic value of intra-tablet coating variability for a given tablet shape and operating conditions. The new approach takes into account the occlusion of tablets which is shown to have a significant influence on the coating mass distribution over the tablet surface.
机译:片剂的连续包衣是制药工业中的最新趋势,并且有望提高包衣过程的效率。在这项工作中,研究了涂层变异性,这是涂层工艺最重要的关键质量属性之一。研究了片剂间包衣的可变性和片剂内包衣的可变性。对于连续包衣机,片剂间包衣的可变性取决于片剂在包衣机中的停留时间,而片剂在包衣机中的停留时间又取决于片剂的轴向运动。 。建立了基于更新理论的数学框架,并获得了颗粒间涂层变化的表达式,该表达式解释了涂层机内部颗粒停留时间的变化。该模型不对粒子轴向运动的性质做出任何假设。但是,离散元方法模拟显示​​,可以通过以轴向Peclet数为特征的对流运动和扩散运动的组合来精确地模拟粒子轴向运动。使用这种对流扩散模型,发现为了保持小于1%的颗粒间包衣变异性(通常是功能性药物片剂包衣所要求的),需要Peclet数为20,000。对于通常的1 m连续涂布机长度,或对于典型的颗粒扩散系数和进料速率,至少15 m的涂布机长度,如此大的Peclet数将需要实质上的塞流。这些发现表明使用了与分批式包衣机非常相似的间隔式连续包衣机,片剂沿滚筒的长度方向移动。;假设有间隔的连续包衣机,则开发了基于隔间模型的人口平衡(PB)模型以减少计算量使用离散元方法(DEM)建模研究药片运动所需的时间。根据颗粒在转鼓中的运动,提出了一个由喷雾区和主动床和被动床区组成的隔室模型。通过拟合DEM模拟数据的前几十秒(35 s-85 s)中随时间变化的涂层质量变异性曲线,可以估算出PB方程组的耦合参数。使用PB模型可预测长期涂层质量变化(1,000 s),并将其与DEM模拟的直接测量结果进行比较。在这三种情况下,模型与DEM仿真之间取得了很好的一致性,相对误差小于5%。为了研究片剂内部涂层的变异性,开发了一种新的基于图像的算法,该算法至少要比基于光线跟踪的方法快得多。平板电脑的表面分为多个面板,并使用基于GPU的方法识别每个面板上的涂层质量。将片剂表面上的涂层质量分布与片剂表面上的涂层厚度的实验测量值进行比较。在模拟和实验之间,对于片剂表面上的平均包衣质量分布获得了良好的一致性。对于给定的片剂形状和操作条件,还开发了一种新方法来获得片剂内部包衣变异性的渐近值。新方法考虑了片剂的阻塞,这显示出对片剂表面上的包衣质量分布具有显着影响。

著录项

  • 作者

    Kumar, Rahul.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号