首页> 外文学位 >Mathematical modeling of solidification phenomena in electromagnetically stirred melts.
【24h】

Mathematical modeling of solidification phenomena in electromagnetically stirred melts.

机译:电磁搅拌熔体中凝固现象的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

A methodology is presented to simulate the electromagnetic, heat transfer, and fluid flow phenomena for two dimensional electromagnetic solidification processes. For computation of the electromagnetic field, the model utilizes the mutual inductance technique to limit the solution domain to the molten metal and magnetic shields, commonly present in solidification systems. The temperature and velocity fields were solved using the control volume method in the metal domain. The developed model employs a two domain formulation for the mushy zone. Mathematical formulations are presented for turbulent flow in the bulk liquid and the suspended particle region, along with rheological behavior. An expression has been developed---for the first time---to describe damping of the flow in the suspended particle region as a result of the interactions between the particles and the turbulent eddies. The flow in the fixed particle region is described using Darcy's law. Calculations were carried out for globular and dendritic solidification morphologies of an electromagnetically-stirred melt in a bottom-chill mold. The coherency solid fraction for the globular solidification morphology was taken to be 0.5, while the coherency for dendritic morphology was 0.25. The results showed the flow intensity in the suspended particle region was reduced by an order of magnitude. The effect of the heat extraction rate on solidification time was investigated using three different heat transfer coefficients. The results showed that the decrease in solidification time is nonlinear with respect to increasing heat transfer coefficient. The influence of the final grain size on the damping of the flow in the suspended particle region was examined, and it was found that larger grain sizes reduce the extent of flow damping.
机译:提出了一种方法来模拟二维电磁凝固过程的电磁,传热和流体流动现象。为了计算电磁场,该模型利用互感技术将溶液域限制在凝固系统中常见的熔融金属和磁屏蔽层中。在金属域中使用控制体积法求解了温度和速度场。开发的模型对糊状区域采用了两个域的公式。给出了在大体积液体和悬浮颗粒区域中的湍流以及流变行为的数学公式。首次开发出一种表达式来描述由于粒子与湍流之间的相互作用而导致的悬浮粒子区域内流动的衰减。使用达西定律描述固定粒子区域中的流动。对底部冷却模具中的电磁搅拌熔体的球状和树枝状凝固形态进行了计算。球状凝固形态的相干性固体分数为0.5,而树枝状形态的相干性固体分数为0.25。结果表明,悬浮颗粒区的流动强度降低了一个数量级。使用三种不同的传热系数研究了热提取速率对凝固时间的影响。结果表明,凝固时间的减少与传热系数的增加是非线性的。研究了最终晶粒尺寸对悬浮颗粒区域中流动衰减的影响,发现较大的晶粒减小了流动衰减的程度。

著录项

  • 作者

    Poole, Gregory Michael.;

  • 作者单位

    The University of Alabama.;

  • 授予单位 The University of Alabama.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号