首页> 外文学位 >On plasma convection in Saturn's magnetosphere.
【24h】

On plasma convection in Saturn's magnetosphere.

机译:在土星磁层的等离子体对流中。

获取原文
获取原文并翻译 | 示例

摘要

We use CAPS plasma data to derive particle characteristics within Saturn's inner magnetosphere. Our approach is to first develop a forward-modeling program to derive 1-dimensional (1D) isotropic plasma characteristics in Saturn's inner, equatorial magnetosphere using a novel correction for the spacecraft potential and penetrating background radiation. The advantage of this fitting routine is the simultaneous modeling of plasma data and systematic errors when operating on large data sets, which greatly reduces the computation time and accurately quantifies instrument noise. The data set consists of particle measurements from the Electron Spectrometer (ELS) and the Ion Mass Spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite onboard the Cassini spacecraft. The data is limited to peak ion flux measurements within +/-10° magnetic latitude and 3-15 geocentric equatorial radial distance (RS). Systematic errors such as spacecraft charging and penetrating background radiation are parametrized individually in the modeling and are automatically addressed during the fitting procedure. The resulting values are in turn used as cross-calibration between IMS and ELS, where we show a significant improvement in magnetospheric electron densities and minor changes in the ion characteristics due to the error adjustments. Preliminary results show ion and electron densities in close agreement, consistent with charge neutrality throughout Saturn's inner magnetosphere and confirming the spacecraft potential to be a common influence on IMS and ELS. Comparison of derived plasma parameters with results from previous studies using CAPS data and the Radio And Plasma Wave Science (RPWS) investigation yields good agreement.;Using the derived plasma characteristics we focus on the radial transport of hot electrons. We present evidence of loss-free adiabatic transport of equatorially mirroring electrons (100 eV - 10 keV) in Saturn's magnetosphere between 10-19 RS and from July 1st, 2004 to . Hot electron densities peak near 9 RS and decrease radially at a rate of 1/r3, which suggests a source in the inner magnetosphere. We also observe a decrease in electron energy at a rate of 1/r3 due to the conservation of the first adiabatic invariant, consistent with radial transport through a magnetic dipole. Data from the magnetic field instrument is used to derive the magnetic moment of hot electrons which shows a constant value of 103.4 kgm2s-2 nT-1 +/-10 between 10-19 RS, indicating a loss-free adiabatic transport with minor fluctuations. Plasma transport at Saturn can occur through flux tube interchange instabilities within the magnetosphere, where cold dense plasma is transported radially outward while hot tenuous plasma from the outer magnetosphere moves radially inward. Gradient-curvature drifts cause these hot electrons leave the injection and superimpose on the ambient cold plasma, consequently forcing it to move radially outward. This implies flux-tube interchange to be the main source for hot electrons.;Hot electrons are part of the plasma analysis for which CAPS was designed, while the MIMI-LEMMS instrument measures higher energy electrons. Taking into account the penetrating background radiation, we are able to derive information for these energetic particles using our plasma instruments. We present CAPS-IMS background measurements derived from plasma data and show strong correlation with high energy particle data from MIMI-LEMMS. IMS background is generated via two main processes: 1) Collisions between the instrument walls and ambient energetic particles, which cause X-rays to trigger count signals in the instrument optics, and 2) backscatter of energetic particles in the electrostatic analyzer. We quantify these effects and use the results to identify Saturn's radiation belt peaks and nadirs, and magnetospheric regions of depleted particle fluxes, or microsignatures, which are formed through interactions with moons and ring systems. Using methods described in [119] we analyze a moon microsignatures during the outbound phase of Saturn orbit insertion (2004-183) and inside the orbit of Mimas, a region of intense radiation. Using the physical characteristics and radial locations of Atlas, Prometheus, and Pandora we derive the radial diffusion coefficient to be less than 1 x10-9 and particle energies to be below 1 MeV.
机译:我们使用CAPS等离子体数据得出土星内部磁层中的粒子特征。我们的方法是首先开发一种正向建模程序,使用一种新颖的航天器势能校正和穿透背景辐射的方法,得出土星内赤道磁层的一维(1D)各向同性等离子体特性。这种拟合例程的优点是在处理大型数据集时可以同时对血浆数据和系统误差进行建模,从而大大减少了计算时间并准确量化了仪器噪声。该数据集包括来自电子光谱仪(ELS)和离子质谱仪(IMS)的粒子测量值,这是卡西尼航天器上卡西尼等离子体光谱仪(CAPS)仪器套件的一部分。数据仅限于在+/- 10°磁纬度和3-15个地心赤道径向距离(RS)之内的峰值离子通量测量值。系统误差(例如航天器的充电和穿透背景辐射)在模型中分别进行参数设置,并在拟合过程中自动解决。结果值又被用作IMS和ELS之间的交叉校准,在这里我们显示出磁层电子密度的显着改善以及由于误差调整而引起的离子特性的微小变化。初步结果显示,离子密度和电子密度紧密一致,与整个土星内部磁层的电荷中性一致,并确认航天器的电势对IMS和ELS具有普遍影响。将导出的等离子体参数与以前使用CAPS数据进行的研究结果以及无线电波和等离子体波科学(RPWS)的研究结果进行比较,得出了很好的共识。;使用导出的等离子体特性,我们专注于热电子的径向传输。我们提供了从10-19 RS到2004年7月1日到2004年之间,土星磁层中赤道镜像电子(100 eV-10 keV)的无损绝热传输的证据。热电子密度在9 RS附近达到峰值,并以1 / r3的速率径向减小,这表明内部磁层中有一个源。我们还观察到由于第一绝热不变量的守恒,电子能量以1 / r3的速率下降,这与通过磁偶极子的径向传输相一致。来自磁场仪器的数据用于导出热电子的磁矩,该热矩在10-19 RS之间显示103.4 kgm2s-2 nT-1 +/- 10的恒定值,表示无损耗的绝热传输,且波动很小。土星处的等离子体传输可能通过磁层内的通量管互换不稳定性而发生,其中冷密集的等离子体沿径向向外传输,而来自外部磁层的热微弱等离子体沿径向向内移动。梯度曲率漂移会导致这些热电子离开注入并叠加在周围的冷等离子体上,从而迫使其径向向外移动。这意味着通量管交换将成为热电子的主要来源。热电子是为CAPS设计的等离子体分析的一部分,而MIMI-LEMMS仪器则测量高能电子。考虑到穿透的背景辐射,我们能够使用我们的等离子仪器获得这些高能粒子的信息。我们目前从血浆数据中得出CAPS-IMS背景测量值,并显示出与MIMI-LEMMS的高能粒子数据的强相关性。 IMS背景是通过两个主要过程生成的:1)仪器壁与周围高能粒子之间的碰撞,这会导致X射线触发仪器光学系统中的计数信号,以及2)静电分析仪中高能粒子的反向散射。我们对这些影响进行量化,并使用结果确定土星的辐射带峰值和最低点,以及通过与卫星和环系统的相互作用而形成的磁通层耗尽的磁通量或微特征。使用[119]中描述的方法,我们分析了土星轨道插入的出站阶段(2004-183年)和Mimas轨道内部(强烈辐射区域)的月球微特征。利用Atlas,Prometheus和Pandora的物理特征和径向位置,我们得出径向扩散系数小于1 x10-9且粒子能量小于1 MeV。

著录项

  • 作者

    Livi, Roberto.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Astronomy.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号